使用accumulate step节省显卡内存

使用前提:

单卡,模型+batch=1的数据能跑起来

使用accumulate step的意思就是,每次forward较小的batch,如batch=4,每4steps再更新一次参数,训练结果等效于batch=16

先跑一次原先的模型

复制代码
python NLinear_exp_full.py --accu_step 1 --batch 16 
epoch: 0
time comsuming: 1.8598144054412842
training epoch:0:0.0%
time comsuming: 2.137087106704712
training epoch:0:80.64516129032258%
time comsuming: 2.2242424488067627
time comsuming: 2.294013500213623
test epoch:0:0.0%
episode 0 mae 23.900234 rmse 66.41403 smape 0.934281
epoch: 1
time comsuming: 3.2021634578704834
training epoch:1:0.0%
time comsuming: 3.477159261703491
training epoch:1:80.64516129032258%
time comsuming: 3.560976505279541
time comsuming: 3.624363422393799
test epoch:1:0.0%
episode 1 mae 22.137833 rmse 64.748055 smape 0.79881644
epoch: 2
time comsuming: 3.982663869857788
training epoch:2:0.0%
time comsuming: 4.26115345954895
training epoch:2:80.64516129032258%
time comsuming: 4.350359678268433
time comsuming: 4.427008628845215
test epoch:2:0.0%
episode 2 mae 21.542023 rmse 64.10915 smape 0.68798375
epoch: 3
time comsuming: 4.786099910736084
training epoch:3:0.0%
time comsuming: 5.036171913146973
training epoch:3:80.64516129032258%
time comsuming: 5.121201038360596
time comsuming: 5.197283744812012
test epoch:3:0.0%
episode 3 mae 21.322206 rmse 64.079384 smape 0.6753313
epoch: 4
time comsuming: 5.5672008991241455
training epoch:4:0.0%
time comsuming: 5.830775260925293
training epoch:4:80.64516129032258%
time comsuming: 5.919378757476807
time comsuming: 5.9778666496276855

再跑一次batch设置为4,且accumulate step为4的情况

复制代码
python NLinear_exp_full.py --accu_step 4 --batch 4 
time comsuming: 1.9860742092132568
training epoch:0:0.0%
time comsuming: 2.221600294113159
training epoch:0:20.161290322580644%
time comsuming: 2.453077554702759
training epoch:0:40.32258064516129%
time comsuming: 2.675966262817383
training epoch:0:60.483870967741936%
time comsuming: 2.832383394241333
training epoch:0:80.64516129032258%
time comsuming: 3.0732641220092773
time comsuming: 3.1844491958618164
test epoch:0:0.0%
time comsuming: 3.4134249687194824
test epoch:0:72.99270072992701%
episode 0 mae 23.900234 rmse 66.41403 smape 0.934281
epoch: 1
time comsuming: 4.225269079208374
training epoch:1:0.0%
time comsuming: 4.442946434020996
training epoch:1:20.161290322580644%
time comsuming: 4.611685752868652
training epoch:1:40.32258064516129%
time comsuming: 4.845811367034912
training epoch:1:60.483870967741936%
time comsuming: 5.074229001998901
training epoch:1:80.64516129032258%
time comsuming: 5.326176166534424
time comsuming: 5.397624492645264
test epoch:1:0.0%
time comsuming: 5.633365869522095
test epoch:1:72.99270072992701%
episode 1 mae 22.137833 rmse 64.748055 smape 0.79881644
epoch: 2
time comsuming: 5.991377592086792
training epoch:2:0.0%
time comsuming: 6.217101097106934
training epoch:2:20.161290322580644%
time comsuming: 6.363693714141846
training epoch:2:40.32258064516129%
time comsuming: 6.590087175369263
training epoch:2:60.483870967741936%
time comsuming: 6.823684215545654
training epoch:2:80.64516129032258%
time comsuming: 7.081570625305176
time comsuming: 7.148298978805542
test epoch:2:0.0%
time comsuming: 7.377046823501587
test epoch:2:72.99270072992701%
episode 2 mae 21.542023 rmse 64.10915 smape 0.68798375
epoch: 3
time comsuming: 7.766062021255493
training epoch:3:0.0%
time comsuming: 7.996231317520142
training epoch:3:20.161290322580644%
time comsuming: 8.161593675613403
training epoch:3:40.32258064516129%
time comsuming: 8.388957738876343
training epoch:3:60.483870967741936%
time comsuming: 8.618509769439697
training epoch:3:80.64516129032258%
time comsuming: 8.876739978790283
time comsuming: 8.95041275024414
test epoch:3:0.0%
time comsuming: 9.18027663230896

显存占比: 514MB VS 494MB

相关推荐
zhangshuang-peta几秒前
人工智能代理团队在软件开发中的协同机制
人工智能·ai agent·mcp·peta
love you joyfully几秒前
告别“人多力量大”误区:看AI团队如何通过奖励设计实现协作韧性
人工智能·深度学习·神经网络·多智能体
2501_945318493 分钟前
AI证书避雷,需认准官方资质与行业口碑两大核心
人工智能
方见华Richard3 分钟前
世毫九“量子原住民”教育理念完整框架
人工智能·交互·学习方法·原型模式·空间计算
一切尽在,你来4 分钟前
1.3 环境搭建
人工智能·ai·langchain·ai编程
njsgcs5 分钟前
agentscope 调用vlm
人工智能
happyprince9 分钟前
2026年02月08日热门论文
人工智能·深度学习·计算机视觉
一晌小贪欢9 分钟前
深入理解 Python HTTP 请求:从基础到高级实战指南
开发语言·网络·python·网络协议·http
七牛云行业应用10 分钟前
1M上下文腐烂?实测Opus 4.6 vs GPT-5.3及MoA降本架构源码
人工智能·python·llm·架构设计·gpt-5·claude-opus
芷栀夏12 分钟前
CANN ops-math:面向 AI 计算的基础数学算子开发与高性能调用实战指南
人工智能·深度学习·神经网络·cann