图像语义分割 pytorch复现U2Net图像分割网络详解

图像语义分割 pytorch复现U2Net图像分割网络详解


U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

1、U2Net网络模型结构

网络的主体类似于U-Net的网络结构,在大的U-Net中,每一个小的block都是一个小型的类似于U-Net的结构,因此作者取名U2Net

仔细观察,可以将网络中的block分成两类:
第一类:En_1 ~ En_4 与 De_1 ~ De_4这8个block采用的block其实是一样的,只不过模块的深度不同。

第二类:En_5、En_6、De_5

  • 在整个U2Net网络中,在Encoder阶段,每通过一个block都会进行一次下采样操作(下采样2倍,maxpool)
  • 在Decoder阶段,在每个block之间,都会进行一次上采样(2倍,bilinear)

2、block模块结构解析

在 En_1 与 De_1 模块中,采用的 block 是RSU-7;

En_2 与 De_2采用的 block 是RSU-6(RSU-6相对于RSU-7 就是少了一个下采样卷积以及上采样卷积的部分,RSU-6 block只会下采样16倍,RSU-7 block下采样的32倍);

En_3 与 De_3采用的 block 是RSU-5

En_4 与 De_4采用的 block 是RSU-4

En_5、En_6、De_5采用的block是RSU-4F

(使用RSU-4F的原因:因为数据经过En_1 ~ En4 下采样处理后对应特征图的高与宽就已经相对比较小了,如果再继续下采样就会丢失很多上下文信息,作者为了保留上下文信息,就对En_5、En_6、De_5不再进行下采样了而是在RSU-4F的模块中,将下采样、上采样结构换成了膨胀卷积)

RSU-7模块

详细结构图解

RSU-4F

saliency map fusion module

saliency map fusion module模块是将每个阶段的特征图进行融合 ,得到最终的预测概率图,即下图中,红色框标注的模块

其会收集De_1、De_2、De_3、De_4、De_5、En_6模块的输出,将这些输出分别通过一个3x3的卷积层(这些卷积层的kerner的个数都是为1)输出的featuremap的channel是为1的,在经过双线性插值算法将得到的特征图还原回输入图像的大小;再将得到的6个特征图进行concant拼接;在经过一个1x1的卷积层以及sigmoid激活函数,最终得到融合之后的预测概率图。

U2Net网络结构详细参数配置


u2net_full大小为176.3M、u2net_lite大小为4.7M

RSU模块代码实现

python 复制代码
class RSU(nn.Module):
    def __init__(self, height: int, in_ch: int, mid_ch: int, out_ch: int):
        super().__init__()

        assert height >= 2
        self.conv_in = ConvBNReLU(in_ch, out_ch)

        encode_list = [DownConvBNReLU(out_ch, mid_ch, flag=False)]
        decode_list = [UpConvBNReLU(mid_ch * 2, mid_ch, flag=False)]
        for i in range(height - 2):
            encode_list.append(DownConvBNReLU(mid_ch, mid_ch))
            decode_list.append(UpConvBNReLU(mid_ch * 2, mid_ch if i < height - 3 else out_ch))

        encode_list.append(ConvBNReLU(mid_ch, mid_ch, dilation=2))
        self.encode_modules = nn.ModuleList(encode_list)
        self.decode_modules = nn.ModuleList(decode_list)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)

        x = encode_outputs.pop()
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = m(x, x2)

        return x + x_in

RSU4F模块代码实现

python 复制代码
class RSU4F(nn.Module):
    def __init__(self, in_ch: int, mid_ch: int, out_ch: int):
        super().__init__()
        self.conv_in = ConvBNReLU(in_ch, out_ch)
        self.encode_modules = nn.ModuleList([ConvBNReLU(out_ch, mid_ch),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=8)])

        self.decode_modules = nn.ModuleList([ConvBNReLU(mid_ch * 2, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch * 2, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch * 2, out_ch)])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)

        x = encode_outputs.pop()
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = m(torch.cat([x, x2], dim=1))

        return x + x_in

u2net_full与u2net_lite模型配置函数

python 复制代码
def u2net_full(out_ch: int = 1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side     side:表示是否要收集当前block的输出
        "encode": [[7, 3, 32, 64, False, False],      # En1
                   [6, 64, 32, 128, False, False],    # En2
                   [5, 128, 64, 256, False, False],   # En3
                   [4, 256, 128, 512, False, False],  # En4
                   [4, 512, 256, 512, True, False],   # En5
                   [4, 512, 256, 512, True, True]],   # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 1024, 256, 512, True, True],   # De5
                   [4, 1024, 128, 256, False, True],  # De4
                   [5, 512, 64, 128, False, True],    # De3
                   [6, 256, 32, 64, False, True],     # De2
                   [7, 128, 16, 64, False, True]]     # De1
    }

    return U2Net(cfg, out_ch)


def u2net_lite(out_ch: int = 1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "encode": [[7, 3, 16, 64, False, False],  # En1
                   [6, 64, 16, 64, False, False],  # En2
                   [5, 64, 16, 64, False, False],  # En3
                   [4, 64, 16, 64, False, False],  # En4
                   [4, 64, 16, 64, True, False],  # En5
                   [4, 64, 16, 64, True, True]],  # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 128, 16, 64, True, True],  # De5
                   [4, 128, 16, 64, False, True],  # De4
                   [5, 128, 16, 64, False, True],  # De3
                   [6, 128, 16, 64, False, True],  # De2
                   [7, 128, 16, 64, False, True]]  # De1
    }

U2Net网络整体定义类

python 复制代码
class U2Net(nn.Module):
    def __init__(self, cfg: dict, out_ch: int = 1):
        super().__init__()
        assert "encode" in cfg
        assert "decode" in cfg
        self.encode_num = len(cfg["encode"])

        encode_list = []
        side_list = []
        for c in cfg["encode"]:
            # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
            assert len(c) == 6
            encode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))     # 判断当前是构建RSU模块,还是构建RSU4F模块

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))
        self.encode_modules = nn.ModuleList(encode_list)

        decode_list = []
        for c in cfg["decode"]:
            # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
            assert len(c) == 6
            decode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))    # 收集当前block的输出
        self.decode_modules = nn.ModuleList(decode_list)
        self.side_modules = nn.ModuleList(side_list)
        self.out_conv = nn.Conv2d(self.encode_num * out_ch, out_ch, kernel_size=1)   # 构建一个1x1的卷积层,去融合来自不同尺度的信息

    def forward(self, x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
        _, _, h, w = x.shape

        # collect encode outputs
        encode_outputs = []
        for i, m in enumerate(self.encode_modules):
            x = m(x)
            encode_outputs.append(x)
            if i != self.encode_num - 1:  # 此处需要进行判断,因为在没通过一个encoder模块后,都需要进行下采样的,但最后一个模块后,是不需要下采样的
                x = F.max_pool2d(x, kernel_size=2, stride=2, ceil_mode=True)

        # collect decode outputs
        x = encode_outputs.pop()
        decode_outputs = [x]
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = F.interpolate(x, size=x2.shape[2:], mode='bilinear', align_corners=False)
            x = m(torch.concat([x, x2], dim=1))
            decode_outputs.insert(0, x)

        # collect side outputs
        side_outputs = []
        for m in self.side_modules:
            x = decode_outputs.pop()
            x = F.interpolate(m(x), size=[h, w], mode='bilinear', align_corners=False)
            side_outputs.insert(0, x)

        x = self.out_conv(torch.concat(side_outputs, dim=1))

        if self.training:
            # do not use torch.sigmoid for amp safe
            return [x] + side_outputs     # 用于计算损失
        else:
            return torch.sigmoid(x)

损失函数计算

如上图所示,红色框部分为每个分量与真实标签的交叉熵损失函数求和;黄色框标部分为将各个分量经双线性插值恢复至原始尺寸、进行concant处理、经过1x1的卷积核与sigmoid处理后的结果与真实标签的交叉熵损失函数。
损失函数代码实现:

python 复制代码
import math
import torch
from torch.nn import functional as F
import train_utils.distributed_utils as utils


def criterion(inputs, target):
    losses = [F.binary_cross_entropy_with_logits(inputs[i], target) for i in range(len(inputs))]
    total_loss = sum(losses)

    return total_loss

评价指标

其中F-measure是在0~1之间的,数值越大,代表的网络分割效果越好;

MAE是Mean Absolute Error的缩写,其值是在0~1之间的,越趋近于0,代表网络性能越好。

数据集


pytorch训练U2Net图像分割模型

项目目录结构:

python 复制代码
├── src: 搭建网络相关代码
├── train_utils: 训练以及验证相关代码
├── my_dataset.py: 自定义数据集读取相关代码
├── predict.py: 简易的预测代码
├── train.py: 单GPU或CPU训练代码
├── train_multi_GPU.py: 多GPU并行训练代码
├── validation.py: 单独验证模型相关代码
├── transforms.py: 数据预处理相关代码
└── requirements.txt: 项目依赖

项目目录:

项目中u2net_full大小为176.3M、u2net_lite大小为4.7M,演示过程中,训练的为u2net_lite版本
多GPU训练指令:
pytorch版本为1.7

python 复制代码
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env train_multi_GPU.py --data-path ./data_root

训练过程损失函数,评估指标变化

python 复制代码
[epoch: 0] train_loss: 3.0948 lr: 0.000500 MAE: 0.263 maxF1: 0.539 
[epoch: 10] train_loss: 1.1108 lr: 0.000998 MAE: 0.111 maxF1: 0.729 
[epoch: 20] train_loss: 0.8480 lr: 0.000993 MAE: 0.093 maxF1: 0.764 
[epoch: 30] train_loss: 0.7438 lr: 0.000984 MAE: 0.086 maxF1: 0.776 
[epoch: 40] train_loss: 0.6625 lr: 0.000971 MAE: 0.082 maxF1: 0.790 
[epoch: 50] train_loss: 0.5897 lr: 0.000954 MAE: 0.077 maxF1: 0.801 
[epoch: 60] train_loss: 0.5273 lr: 0.000934 MAE: 0.071 maxF1: 0.808 
[epoch: 70] train_loss: 0.5139 lr: 0.000911 MAE: 0.079 maxF1: 0.787 
[epoch: 80] train_loss: 0.4775 lr: 0.000885 MAE: 0.073 maxF1: 0.801 
[epoch: 90] train_loss: 0.4601 lr: 0.000855 MAE: 0.069 maxF1: 0.809 
[epoch: 100] train_loss: 0.4529 lr: 0.000823 MAE: 0.065 maxF1: 0.805 
[epoch: 110] train_loss: 0.4441 lr: 0.000788 MAE: 0.068 maxF1: 0.810 
[epoch: 120] train_loss: 0.3991 lr: 0.000751 MAE: 0.066 maxF1: 0.806 
[epoch: 130] train_loss: 0.3903 lr: 0.000712 MAE: 0.065 maxF1: 0.824 
[epoch: 140] train_loss: 0.3770 lr: 0.000672 MAE: 0.060 maxF1: 0.823 
[epoch: 150] train_loss: 0.3666 lr: 0.000630 MAE: 0.064 maxF1: 0.825 
[epoch: 160] train_loss: 0.3530 lr: 0.000587 MAE: 0.060 maxF1: 0.829 
[epoch: 170] train_loss: 0.3557 lr: 0.000544 MAE: 0.063 maxF1: 0.820 
[epoch: 180] train_loss: 0.3430 lr: 0.000500 MAE: 0.065 maxF1: 0.816 
[epoch: 190] train_loss: 0.3366 lr: 0.000456 MAE: 0.059 maxF1: 0.832 
[epoch: 200] train_loss: 0.3285 lr: 0.000413 MAE: 0.062 maxF1: 0.822 
[epoch: 210] train_loss: 0.3197 lr: 0.000370 MAE: 0.058 maxF1: 0.829 
[epoch: 220] train_loss: 0.3093 lr: 0.000328 MAE: 0.058 maxF1: 0.828 
[epoch: 230] train_loss: 0.3071 lr: 0.000288 MAE: 0.058 maxF1: 0.827 
[epoch: 240] train_loss: 0.2983 lr: 0.000249 MAE: 0.056 maxF1: 0.830 
[epoch: 250] train_loss: 0.2932 lr: 0.000212 MAE: 0.060 maxF1: 0.825 
[epoch: 260] train_loss: 0.2908 lr: 0.000177 MAE: 0.060 maxF1: 0.828 
[epoch: 270] train_loss: 0.2895 lr: 0.000145 MAE: 0.057 maxF1: 0.832 
[epoch: 280] train_loss: 0.2834 lr: 0.000115 MAE: 0.057 maxF1: 0.832 
[epoch: 290] train_loss: 0.2762 lr: 0.000089 MAE: 0.056 maxF1: 0.833 
[epoch: 300] train_loss: 0.2760 lr: 0.000066 MAE: 0.056 maxF1: 0.832 
[epoch: 310] train_loss: 0.2752 lr: 0.000046 MAE: 0.057 maxF1: 0.832 
[epoch: 320] train_loss: 0.2782 lr: 0.000029 MAE: 0.056 maxF1: 0.834 
[epoch: 330] train_loss: 0.2744 lr: 0.000016 MAE: 0.056 maxF1: 0.832 
[epoch: 340] train_loss: 0.2752 lr: 0.000007 MAE: 0.056 maxF1: 0.832 
[epoch: 350] train_loss: 0.2739 lr: 0.000002 MAE: 0.057 maxF1: 0.831 
[epoch: 359] train_loss: 0.2770 lr: 0.000000 MAE: 0.056 maxF1: 0.833 

模型测试

python 复制代码
import os
import time

import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
from torchvision.transforms import transforms

from src import u2net_full,u2net_lite


def time_synchronized():
    torch.cuda.synchronize() if torch.cuda.is_available() else None
    return time.time()


def main():
    weights_path = "./multi_train/model_best.pth"
    img_path = "./test_image.PNG"
    threshold = 0.5

    assert os.path.exists(img_path), f"image file {img_path} dose not exists."

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize(320),
        transforms.Normalize(mean=(0.485, 0.456, 0.406),
                             std=(0.229, 0.224, 0.225))
    ])

    origin_img = cv2.cvtColor(cv2.imread(img_path, flags=cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)

    h, w = origin_img.shape[:2]
    img = data_transform(origin_img)
    img = torch.unsqueeze(img, 0).to(device)  # [C, H, W] -> [1, C, H, W]

    # model = u2net_full()
    model =u2net_lite()
    weights = torch.load(weights_path, map_location='cpu')
    if "model" in weights:
        model.load_state_dict(weights["model"])
    else:
        model.load_state_dict(weights)
    model.to(device)
    model.eval()

    with torch.no_grad():
        # init model
        img_height, img_width = img.shape[-2:]
        init_img = torch.zeros((1, 3, img_height, img_width), device=device)
        model(init_img)

        t_start = time_synchronized()
        pred = model(img)
        t_end = time_synchronized()
        print("inference time: {}".format(t_end - t_start))
        pred = torch.squeeze(pred).to("cpu").numpy()  # [1, 1, H, W] -> [H, W]

        pred = cv2.resize(pred, dsize=(w, h), interpolation=cv2.INTER_LINEAR)
        pred_mask = np.where(pred > threshold, 1, 0)
        origin_img = np.array(origin_img, dtype=np.uint8)
        seg_img = origin_img * pred_mask[..., None]
        plt.imshow(seg_img)
        plt.show()
        cv2.imwrite("pred_result.png", cv2.cvtColor(seg_img.astype(np.uint8), cv2.COLOR_RGB2BGR))


if __name__ == '__main__':
    main()
相关推荐
hunandede1 小时前
Ubuntu网络配置(桥接模式, nat模式, host主机模式)
网络·ubuntu·桥接模式
wellnw1 小时前
[Router]路由器常用的后台判断网络ping 可靠公共 IP 地址整理
网络
廿二又1 小时前
http 请求总结get
网络·网络协议·http
Vin0sen1 小时前
xiaomiR4c openwrt
网络
亚远景aspice2 小时前
亚远景-ISO 21434标准下的汽车网络安全测试:全面要求与实施策略
网络·web安全·汽车
忘川8562 小时前
以太网帧结构
网络·物联网·网络协议
IPdodo全球网络服务2 小时前
如何通过TikTok引流到私域流量池
运维·服务器·网络
手心里的白日梦3 小时前
网络层协议--ip协议
网络·网络协议·tcp/ip
开出南方的花3 小时前
BiLSTM+CRF实现NLP中的NER任务
人工智能·pytorch·自然语言处理·nlp·ner·条件随机场
IT 古月方源3 小时前
关于高级acl的配置和讲解
运维·开发语言·网络·tcp/ip·智能路由器