线性判别分析的多分类情况

线性判别分析的多分类情况

情况一

若存在超平面 d i ( x ) = w i x d_i(x)=w_ix di(x)=wix可以将属于 w i w_i wi与不属于 w i w_i wi范围的划开
d i ( x ) = w i T x = { > 0 , i f x ∈ w i < 0 , i f x ∉ w i (1) d_i(x)=w_i^Tx= \begin{cases}> 0 ,\quad if \ x \in w_i\\ < 0, \quad if \ x \notin w_i \end{cases} \tag{1} di(x)=wiTx={>0,if x∈wi<0,if x∈/wi(1)

即通过一个判别函数把整个空间划分成一个 w i w_i wi与不属于 w i w_i wi的范围。就可以将一个M分类问题转化为M个多分类问题。

但是当存在多个 d i ( x ) > 0 d_i(x)>0 di(x)>0的区域或者全部的 d i ( x ) < 0 d_i(x)<0 di(x)<0时,则分类失败,此类空间被称为不确定区域。

情况二

若存在超平面 d i j ( x ) = w i j x d_{ij}(x)=w_{ij}x dij(x)=wijx可以将属于 w i w_i wi与属于 w j w_j wj的范围划开
d i j ( x ) = w i j x = { > 0 , x ∈ w i < 0 , x ∈ w j ∀ i ≠ j d_{ij}(x)=w_{ij}x= \begin{cases}>0 \quad,\quad x\in w_i\\ <0 \quad,\quad x\in w_j \end{cases} \quad \forall i \not=j dij(x)=wijx={>0,x∈wi<0,x∈wj∀i=j

其中满足 d i j ( x ) = − d j i ( x ) d_{ij}(x)=-d_{ji}(x) dij(x)=−dji(x)。

则可以将一个M分类问题转化为 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n−1)个二分类问题。

对所有的 d i j ( x ) d_{ij}(x) dij(x)而言,若 ∀ i ≠ j d i j > 0 \forall i \not=j d_{ij}>0 ∀i=jdij>0,则被称为不确定区域。

情况三

对于没有不确定区域的情况二,

可以将情况二分解为
d i j = d i ( x ) − d j ( x ) = ( w i − w j ) T x d k ( x ) = w k T x , k = 1 , 2 , 3 , . . . , M d_{ij}=d_i(x)-d_j(x)=(w_i-w_j)^Tx\\ d_k(x)=w_k^Tx\quad,\quad k=1,2,3,...,M dij=di(x)−dj(x)=(wi−wj)Txdk(x)=wkTx,k=1,2,3,...,M

若 ∀ i ≠ j , d i ( x ) > d j ( x ) \forall i \not=j,d_i(x)>d_j(x) ∀i=j,di(x)>dj(x),则 x ∈ w i x\in w_i x∈wi。

若 d k ( x ) = m a x { d k ( x ) , k = 1 , 2 , 3 , . . . M } d_k(x)=max\{d_k(x),k=1,2,3,...M\} dk(x)=max{dk(x),k=1,2,3,...M},则 x ∈ w i x \in w_i x∈wi。

即可以把一个M分类问题转化为M-1个多分类问题。

相关推荐
落羽的落羽19 小时前
【Linux系统】C/C++的调试器gdb/cgdb,从入门到精通
linux·服务器·c语言·c++·人工智能·学习·机器学习
weixin_3077791319 小时前
应对不规则负载的异步ML模型服务AWS架构设计
人工智能·深度学习·机器学习·云计算·aws
无风听海20 小时前
神经网络之向量降维
人工智能·神经网络·机器学习
文火冰糖的硅基工坊20 小时前
[人工智能-大模型-103]:模型层 - M个神经元组成的单层神经网络的本质
python·算法·机器学习
青云交20 小时前
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对抗训练与鲁棒性提升
机器学习·自然语言处理·集成学习·鲁棒性·java 大数据·对抗训练·fgsm 算法
Small___ming1 天前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace1 天前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简1 天前
机器学习-回归分析概述
人工智能·机器学习
Godspeed Zhao1 天前
自动驾驶中的传感器技术24.2——Camera(17)
人工智能·机器学习·自动驾驶
pen-ai1 天前
【数据工程】19. 从 DataOps 到可扩展机器学习:让数据与模型协同进化
人工智能·机器学习