卡尔曼滤波器公式

1、卡尔曼滤波公式如下

(1)预测方程:

预测状态向量=转换矩阵*上一时刻更新的状态向量 + 控制矩阵*当前的系统输入

/----------------------P推导 begin-----------------------------/

预测系统状态的协方差矩阵 = E[(状态向量-预测状态向量)(状态向量-预测状态向量)转置]

预测系统状态协方差矩阵 = 转换矩阵*上一时刻系统状态协方差矩阵*转换矩阵的转置+随机噪声*随机噪声转置

/----------------------P推导 end-----------------------------/

(2)更新方程:

/---------------------------------------辅助公式 begin-------------------------------------------------/

当前时刻测量值 = 测量矩阵*当前状态向量 + 测量噪声

测量值估计 = 测量矩阵*预测状态向量

/--------------------------------------辅助公式 end--------------------------------------------------/

状态向量估计 = 预测状态向量 + 卡尔曼增益(当前测量值-测量估计值)

卡尔曼增益 = 系统协方差矩阵*测量矩阵转置/(测量矩阵*系统协方差矩阵*测量矩阵转置)+高斯噪声

系统协方差矩阵 = 预测系统协方差矩阵 - 卡尔曼增益*测量矩阵*预测系统协方差矩阵

/-----------------P+推导 begin------------------------/

状态向量1:

状态向量2:

它们符合高斯分布,如下有,Rt为高斯噪声,

这两个状态向量的来源我们可以认为是独立的,因此他们的联合概率分布是各自概率分布的乘积。***重点是,高斯分布的乘积依旧是高斯分布!!!!***新的高斯分布的均值和方差有如下表达形式:

/-----------------P+推导 end----------------------/

相关推荐
玄〤13 分钟前
Java 大数据量输入输出优化方案详解:从 Scanner 到手写快读(含漫画解析)
java·开发语言·笔记·算法
weixin_3954489120 分钟前
main.c_cursor_0202
前端·网络·算法
senijusene25 分钟前
数据结构与算法:队列与树形结构详细总结
开发语言·数据结构·算法
杜家老五26 分钟前
综合实力与专业服务深度解析 2026北京网站制作公司六大优选
数据结构·算法·线性回归·启发式算法·模拟退火算法
2301_765703141 小时前
C++与自动驾驶系统
开发语言·c++·算法
Ll13045252981 小时前
Leetcode二叉树 part1
b树·算法·leetcode
鹿角片ljp1 小时前
力扣9.回文数-转字符双指针和反转数字
java·数据结构·算法
热爱编程的小刘1 小时前
Lesson04---类与对象(下篇)
开发语言·c++·算法
有代理ip2 小时前
成功请求的密码:HTTP 2 开头响应码深度解析
java·大数据·python·算法·php
YYuCChi2 小时前
代码随想录算法训练营第三十四天 | 62.不同路径、63.不同路径||
算法