卡尔曼滤波器公式

1、卡尔曼滤波公式如下

(1)预测方程:

预测状态向量=转换矩阵*上一时刻更新的状态向量 + 控制矩阵*当前的系统输入

/----------------------P推导 begin-----------------------------/

预测系统状态的协方差矩阵 = E[(状态向量-预测状态向量)(状态向量-预测状态向量)转置]

预测系统状态协方差矩阵 = 转换矩阵*上一时刻系统状态协方差矩阵*转换矩阵的转置+随机噪声*随机噪声转置

/----------------------P推导 end-----------------------------/

(2)更新方程:

/---------------------------------------辅助公式 begin-------------------------------------------------/

当前时刻测量值 = 测量矩阵*当前状态向量 + 测量噪声

测量值估计 = 测量矩阵*预测状态向量

/--------------------------------------辅助公式 end--------------------------------------------------/

状态向量估计 = 预测状态向量 + 卡尔曼增益(当前测量值-测量估计值)

卡尔曼增益 = 系统协方差矩阵*测量矩阵转置/(测量矩阵*系统协方差矩阵*测量矩阵转置)+高斯噪声

系统协方差矩阵 = 预测系统协方差矩阵 - 卡尔曼增益*测量矩阵*预测系统协方差矩阵

/-----------------P+推导 begin------------------------/

状态向量1:

状态向量2:

它们符合高斯分布,如下有,Rt为高斯噪声,

这两个状态向量的来源我们可以认为是独立的,因此他们的联合概率分布是各自概率分布的乘积。***重点是,高斯分布的乘积依旧是高斯分布!!!!***新的高斯分布的均值和方差有如下表达形式:

/-----------------P+推导 end----------------------/

相关推荐
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法