KILM: Knowledge Injection into Encoder-Decoder Language Models

本文是LLM系列文章,针对《KILM: Knowledge Injection into Encoder-Decoder Language Models》的翻译。

KILM:知识注入到编码器-解码器语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 讨论](#5 讨论)
  • [6 结论](#6 结论)
  • 局限性

摘要

大型预训练语言模型(PLMs)已被证明在其参数内保留隐含知识。为了增强这种隐性知识,我们提出了知识注入语言模型(KILM),这是一种通过持续预训练生成知识填充目标将实体相关知识注入编码器-解码器plm的新方法。这无需对plm进行架构修改或添加额外参数即可完成。在一系列知识密集型任务上的实验结果表明,KILM使模型能够在保留一般NLU和NLG任务的原始性能的同时保留更多的知识和更少的幻觉。KILM还在实体消歧等任务上展示了改进的零样本性能,优于具有30倍以上参数的最先进模型。

1 引言

2 相关工作

3 方法

4 实验

5 讨论

6 结论

在本文中,我们提出了一种新的方法,KILM,通过持续的预训练将实体相关知识注入大型plm。我们的方法提高了原始plm在知识密集型任务上的性能,特别是在零样本和小样本设置中,同时不会造成灾难性的后果原始plm中知识的遗忘。所提出的实体知识的独特结构能够灵活地探测不同背景下注入的知识。

局限性

在本文中,我们提出了一种持续预训练的方法,将知识注入到大型预训练的语言模型中。每次预训练实验使用8个V100 gpu,初级设置下,基本尺寸模型预训练5天,大尺寸模型预训练13天。在数据升级设置中,这些数字明显更大(大尺寸模型为30天)。尽管它在减少推理时间的资源需求方面具有优势,但在训练时间内,KILM既耗时又消耗计算资源。

与任何基于模型的生成系统类似,KILM可能容易生成关于实体的事实不正确的陈述。这些陈述也可能有基于种族、种族和性取向的偏见。

相关推荐
Coder_Boy_4 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱6 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º8 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee10 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º10 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys11 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567811 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子11 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能11 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448711 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能