【论文阅读】 Cola-Dif; An explainable task-specific synthesis network

文章目录

    • [CoLa-Diff: Conditional Latent Diffusion Model for Multi-modal MRI Synthesis](#CoLa-Diff: Conditional Latent Diffusion Model for Multi-modal MRI Synthesis)
    • [An Explainable Deep Framework: Towards Task-Specific Fusion for Multi-to-One MRI Synthesis](#An Explainable Deep Framework: Towards Task-Specific Fusion for Multi-to-One MRI Synthesis)

CoLa-Diff: Conditional Latent Diffusion Model for Multi-modal MRI Synthesis

论文地址 https://conferences.miccai.org/2023/papers/126-Paper2305.html
摘要:

大多数基于扩散的 MRI 合成模型都使用单一模态;一般在保存结构方面失败;并且为了减少内存消耗。
提出:

在浅层进行扩散,减少内存消耗

和扩散模型基本一致,就是在输入网络里面加入了条件y。损失函数也就是在里面加入了条件y。

类似的协同过滤:

将特征信息进行提取以及融合处理;这里面都是通过小波变换提取的信号。块匹配 δ或阈值 γ。
结构指导:

使用FSL-FAST来分割四种类型脑组织。E里面的结构。将其作为条件输入进去。
自动权重适应:

可以理解为计算能量。

S是Sigmoid激活函数,v,o是可学习的权重。

An Explainable Deep Framework: Towards Task-Specific Fusion for Multi-to-One MRI Synthesis

论文地址 https://conferences.miccai.org/2023/papers/057-Paper0599.html

和本篇论文相关的HyperConv论文地址:https://arxiv.org/abs/2302.00517
摘要:

很多方法缺乏量化不同输入序列的贡献和估计所生成图像中的区域特定质量的能力,使得其难以实用。提出了一个可解释的任务特定的融合序列到序列(TSF-Seq 2Seq)网络,它具有自适应权重的特定合成任务与不同的输入组合和目标。

首先将每个特征通过E进行特征提取,然后进行融合,之后通过TSC编码(0-1)进行加权融合。同时并行的将融合特征通过TSA进行处理。

当某个序列没有输入时:使用0代替。
Task-Specific Weighted Average

c是编码,b是偏执,theta是为了避免除0错误。

Task-Specific Attention

使用HyperConv代替CBAM中的卷积,HyperConv是一个动态滤波器,其内核从共享权重库映射,映射函数由给定的目标代码生成。
损失函数

希望这两个都可以重建为目标图像

特定任务增强映射

得到的结果就是增强映射。通过实验可以看到在重要,难得部分有很大效果。

相关推荐
sca1p311 天前
新南威尔士大学 LiM
论文阅读·人工智能·加密流量分类
m0_650108241 天前
Lift, Splat, Shoot:自动驾驶多视图相机的 BEV 语义表示学习
论文阅读·自动驾驶·数据驱动·lss·纯视觉bev感知·bev 语义分割·可解释的端到端轨迹规划
m0_650108242 天前
Sparse4D v3:端到端 3D 检测与跟踪的技术突破
论文阅读·自动驾驶·sparse4d v3·端到端3d感知框架·去噪思想·端到端跟踪·纯视觉感知
裤裤兔2 天前
matlab使用FDR校正P值后,P值变小
医学影像·医学图像处理·影像处理·医学图像·影像
m0_650108242 天前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2
提娜米苏2 天前
[论文笔记] End-to-End Audiovisual Fusion with LSTMs
论文阅读·深度学习·lstm·语音识别·论文笔记·多模态
m0_650108242 天前
DiffusionDrive:面向端到端自动驾驶的截断扩散模型
论文阅读·扩散模型·端到端自动驾驶·阶段扩散策略·高级联扩散解码器·cvpr2025
提娜米苏3 天前
[论文笔记] 基于 LSTM 的端到端视觉语音识别 (End-to-End Visual Speech Recognition with LSTMs)
论文阅读·深度学习·计算机视觉·lstm·语音识别·视觉语音识别
m0_650108243 天前
BEVDet:鸟瞰图视角下的高性能多相机 3D 目标检测
论文阅读·bevdet·bev视角·3d目标检测范式·多任务统一框架·bev语言分割
STLearner3 天前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘