Flink的算子列表状态的使用

背景

算子的列表状态是平时比较常见的一种状态,本文通过官方的例子来看一下怎么使用算子列表状态

算子列表状态

算子列表状态支持应用的并行度扩缩容,如下所示:

使用方法参见官方示例,我加了几个注解:

java 复制代码
public class BufferingSink
        implements SinkFunction<Tuple2<String, Integer>>,
                   CheckpointedFunction {//要实现CheckpointedFunction接口

    private final int threshold;

   //算子操作状态对象--算子级别的
    private transient ListState<Tuple2<String, Integer>> checkpointedState;
    //本地变量,保存这个算子任务的本地变量--任务级别的 
    private List<Tuple2<String, Integer>> bufferedElements;

    public BufferingSink(int threshold) {
        this.threshold = threshold;
        this.bufferedElements = new ArrayList<>();
    }

//invoke方法中一般都是操作本地变量bufferedElements,不会直接操作算子列表状态
    @Override
    public void invoke(Tuple2<String, Integer> value, Context contex) throws Exception {
        bufferedElements.add(value);
        if (bufferedElements.size() >= threshold) {
            for (Tuple2<String, Integer> element: bufferedElements) {
                // send it to the sink
            }
            bufferedElements.clear();
        }
    }

    @Override
    public void snapshotState(FunctionSnapshotContext context) throws Exception {
        checkpointedState.clear();
        for (Tuple2<String, Integer> element : bufferedElements) {
            // 把本地变量的值设置到算子列表状态中,算子列表状态会自动会被持久化
            checkpointedState.add(element);
        }
    }

    @Override
    public void initializeState(FunctionInitializationContext context) throws Exception {
        ListStateDescriptor<Tuple2<String, Integer>> descriptor =
            new ListStateDescriptor<>(
                "buffered-elements",
                TypeInformation.of(new TypeHint<Tuple2<String, Integer>>() {}));
        // 定义算子列表状态
        checkpointedState = context.getOperatorStateStore().getListState(descriptor);

        if (context.isRestored()) {
        // 算子列表状态的值设置到本地变量中
            for (Tuple2<String, Integer> element : checkpointedState.get()) {
                bufferedElements.add(element);
            }
        }
    }
}
相关推荐
数据智能老司机19 分钟前
数据工程设计模式——数据基础
大数据·设计模式·架构
笨蛋少年派1 小时前
HDFS简介
大数据·hadoop·hdfs
zskj_qcxjqr1 小时前
数字大健康浪潮下:智能设备重构人力生态,传统技艺如何新生?
大数据·人工智能·科技·机器人
Hello.Reader3 小时前
Apache StreamPark 快速上手从一键安装到跑起第一个 Flink SQL 任务
sql·flink·apache
1024find3 小时前
Spark on k8s部署
大数据·运维·容器·spark·kubernetes
计算机编程-吉哥11 小时前
大数据毕业设计-基于大数据的NBA美国职业篮球联赛数据分析可视化系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
计算机编程-吉哥11 小时前
大数据毕业设计-基于大数据的BOSS直聘岗位招聘数据可视化分析系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
RunningShare13 小时前
从“国庆景区人山人海”看大数据处理中的“数据倾斜”难题
大数据·flink
Hello.Reader14 小时前
Flink 执行模式在 STREAMING 与 BATCH 之间做出正确选择
大数据·flink·batch
文火冰糖的硅基工坊16 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机