分类预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost多输入分类预测

目录

预测效果



基本介绍

1.分类预测 | MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost多输入分类预测;

2.运行环境为Matlab2020b;

3.输入多个特征,分四类,多特征分类预测;

4.data为数据集,excel数据,前12列输入,最后1列输出四类标签,运行主程序即可,所有文件放在一个文件夹。

模型描述

基于LSTM-AdaBoost长短期记忆网络的AdaBoost多输入分类预测是一种集成学习方法。它结合了LSTM网络和AdaBoost算法的优点,能够捕获时序数据的长期依赖性和非线性关系,并提高预测精度。

LSTM网络是一种适用于序列数据的循环神经网络,通过门控机制可以有效地处理长期依赖性的问题。而AdaBoost是一种集成学习算法,通过加权组合多个弱学习器来提高预测准确性。将这两种方法结合起来,可以利用LSTM网络提取序列数据的特征,然后将这些特征作为AdaBoost的输入,通过多个弱学习器的加权组合来分类。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost多输入分类预测
clike 复制代码
%%  创建网络
layers = [ ...
  sequenceInputLayer(12)               % 输入层
  
  lstmLayer(6, 'OutputMode', 'last')   % LSTM层
  reluLayer                            % Relu激活层
  
  fullyConnectedLayer(4)               % 全连接层
  softmaxLayer                         % 分类层
  classificationLayer];

%%  参数设置
options = trainingOptions('adam', ...       % Adam 梯度下降算法
    'MiniBatchSize', 100, ...               % 批大小
    'MaxEpochs', 1000, ...                  % 最大迭代次数
    'InitialLearnRate', 1e-2, ...           % 初始学习率
    'LearnRateSchedule', 'piecewise', ...   % 学习率下降
    'LearnRateDropFactor', 0.1, ...         % 学习率下降因子
    'LearnRateDropPeriod', 700, ...         % 经过700次训练后 学习率为 0.01 * 0.1
    'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集
    'ValidationPatience', Inf, ...          % 关闭验证
    'Plots', 'training-progress', ...       % 画出曲线
    'Verbose', false);

%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);

%%  仿真预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');

%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
番茄寿司2 小时前
基于LSTM的多变量时间序列预测创新路径
论文阅读·深度学习·计算机网络·机器学习·lstm
深蓝岛1 天前
LSTM与CNN融合建模的创新技术路径
论文阅读·人工智能·深度学习·机器学习·lstm
拓端研究室5 天前
Python电力负荷预测:LSTM、GRU、DeepAR、XGBoost、Stacking、ARIMA结合多源数据融合与SHAP可解释性的研究
python·gru·lstm
nju_spy7 天前
牛客网 AI题(一)机器学习 + 深度学习
人工智能·深度学习·机器学习·lstm·笔试·损失函数·自注意力机制
jjjxxxhhh1238 天前
【AI】-RNN/LSTM ,Transformer ,CNN 通俗介绍
人工智能·rnn·lstm
【建模先锋】8 天前
一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
人工智能·lstm·ceemdan·预测模型·风速预测·时间序列预测模型
minhuan9 天前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
fsnine14 天前
从RNN到LSTM:深入理解循环神经网络与长短期记忆网络
网络·rnn·lstm
jie*14 天前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
Bony-15 天前
奶茶销售数据分析
人工智能·数据挖掘·数据分析·lstm