保序回归与金融时序数据

保序回归在回归问题中的作用是通过拟合一个单调递增或递减的函数,来保持数据点的相对顺序特性。

一、保序回归的作用

主要用于以下情况:

  1. 有序数据:当输入数据具有特定的顺序关系时,保序回归可以帮助保持这种顺序关系。例如,时间序列数据、评级数据或排序数据等。

  2. 无噪声数据:如果数据中存在噪声,即一些离群点或错误标记的数据点,保序回归可能会受到这些异常值的干扰。因此,保序回归更适用于相对干净且有序的数据。

  3. 数据平滑:保序回归可以用于平滑数据,消除数据中的波动和噪声,以获得更加稳定的趋势。

  4. 非线性关系:当数据中存在非线性的关系时,保序回归可以更好地捕捉这种非线性关系,而不受线性回归的限制。

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.isotonic import IsotonicRegression

# 构造示例数据
X = np.array([1, 2, 3, 4, 5])  # 自变量
y = np.array([2, 3, 1, 5, 4])  # 因变量

# 创建并训练保序回归模型
model = IsotonicRegression()
model.fit(X, y)

# 预测新的数据点
new_X = np.array([5, 6, 5.5])
predicted_y = model.predict(new_X)

# 输出预测结果
print(predicted_y)

二、保序回归处理金融股票时序数据并可视化

python 复制代码
data = {}
data['close'] = pd.read_pickle('close.pkl')['stock_1'].iloc[-500:]
data['open'] = pd.read_pickle('open.pkl')['stock_1'].iloc[-500:]

n = len(data['close'])
X = np.array(data['open'].values)
y = data['close'].values

from sklearn.isotonic import IsotonicRegression

ir=IsotonicRegression()
y_ir=ir.fit_transform(X,y)

plt.figure(figsize=(15,6))
plt.plot(X,y,'r.',markersize=12)
plt.plot(X,y_ir,'g.-',markersize=12)
plt.legend(('Data','Isotonic Fit'))
plt.title("Isotonic Regression")
plt.show()

三、一个小例子

  1. 收集了股票价格和动量因子的历史数据,其中 stock_prices 是股票价格的时间序列数据,momentum_factors 是相应的动量因子数据,target 是标记股票涨跌的目标变量。

  2. 创建一个 IsotonicRegression 对象 model,并使用 fit 方法拟合模型,将动量因子作为自变量,目标变量作为因变量进行训练。

  3. 定义了新的动量因子 new_momentum_factors,并使用 predict 方法对其进行预测,得到相应的股票涨跌预测结果 predicted_target。

python 复制代码
# 收集股票价格和动量因子的历史数据
stock_prices = np.array([100, 110, 120, 130, 120, 110, 100])
momentum_factors = np.array([0.5, 0.7, 0.9, 1.2, 0.8, 0.6, 0.4])
target = np.array([1, 1, 1, -1, -1, -1, -1])  # 标记股票涨跌,1为涨,-1为跌

# 创建并拟合保序回归模型
model = IsotonicRegression()
model.fit(momentum_factors, target)

# 预测新的动量因子对应的股票涨跌
new_momentum_factors = np.array([0.5, 0.4, 0.7])
predicted_target = model.predict(new_momentum_factors)

# 输出预测结果
print(predicted_target)
相关推荐
落魄君子3 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
落魄君子3 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
qingyunliushuiyu13 小时前
企业为何需要可视化数据分析系统
数据挖掘·数据分析·数据采集·数据可视化·数据分析系统
dundunmm15 小时前
数据挖掘之认识数据
人工智能·机器学习·信息可视化·数据挖掘
长风清留扬17 小时前
机器学习中的密度聚类算法:深入解析与应用
人工智能·深度学习·机器学习·支持向量机·回归·聚类
程序员非鱼17 小时前
深度学习任务简介:分类、回归和生成
人工智能·深度学习·分类·回归·生成
江南野栀子1 天前
数据可视化-1. 折线图
信息可视化·数据挖掘·数据分析
【建模先锋】1 天前
故障诊断 | 一个小创新:特征提取+KAN分类
人工智能·分类·数据挖掘
dundunmm1 天前
机器学习之KNN算法
人工智能·算法·机器学习·数据挖掘·knn·分类算法
胡耀超2 天前
如何从全局视角规划项目与战略决策(“精准接送”案例、技术架构设计与选型、业务逻辑及产品商业模式探讨)
大数据·数据挖掘·软件架构·商业模式·数据管理