保序回归与金融时序数据

保序回归在回归问题中的作用是通过拟合一个单调递增或递减的函数,来保持数据点的相对顺序特性。

一、保序回归的作用

主要用于以下情况:

  1. 有序数据:当输入数据具有特定的顺序关系时,保序回归可以帮助保持这种顺序关系。例如,时间序列数据、评级数据或排序数据等。

  2. 无噪声数据:如果数据中存在噪声,即一些离群点或错误标记的数据点,保序回归可能会受到这些异常值的干扰。因此,保序回归更适用于相对干净且有序的数据。

  3. 数据平滑:保序回归可以用于平滑数据,消除数据中的波动和噪声,以获得更加稳定的趋势。

  4. 非线性关系:当数据中存在非线性的关系时,保序回归可以更好地捕捉这种非线性关系,而不受线性回归的限制。

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.isotonic import IsotonicRegression

# 构造示例数据
X = np.array([1, 2, 3, 4, 5])  # 自变量
y = np.array([2, 3, 1, 5, 4])  # 因变量

# 创建并训练保序回归模型
model = IsotonicRegression()
model.fit(X, y)

# 预测新的数据点
new_X = np.array([5, 6, 5.5])
predicted_y = model.predict(new_X)

# 输出预测结果
print(predicted_y)

二、保序回归处理金融股票时序数据并可视化

python 复制代码
data = {}
data['close'] = pd.read_pickle('close.pkl')['stock_1'].iloc[-500:]
data['open'] = pd.read_pickle('open.pkl')['stock_1'].iloc[-500:]

n = len(data['close'])
X = np.array(data['open'].values)
y = data['close'].values

from sklearn.isotonic import IsotonicRegression

ir=IsotonicRegression()
y_ir=ir.fit_transform(X,y)

plt.figure(figsize=(15,6))
plt.plot(X,y,'r.',markersize=12)
plt.plot(X,y_ir,'g.-',markersize=12)
plt.legend(('Data','Isotonic Fit'))
plt.title("Isotonic Regression")
plt.show()

三、一个小例子

  1. 收集了股票价格和动量因子的历史数据,其中 stock_prices 是股票价格的时间序列数据,momentum_factors 是相应的动量因子数据,target 是标记股票涨跌的目标变量。

  2. 创建一个 IsotonicRegression 对象 model,并使用 fit 方法拟合模型,将动量因子作为自变量,目标变量作为因变量进行训练。

  3. 定义了新的动量因子 new_momentum_factors,并使用 predict 方法对其进行预测,得到相应的股票涨跌预测结果 predicted_target。

python 复制代码
# 收集股票价格和动量因子的历史数据
stock_prices = np.array([100, 110, 120, 130, 120, 110, 100])
momentum_factors = np.array([0.5, 0.7, 0.9, 1.2, 0.8, 0.6, 0.4])
target = np.array([1, 1, 1, -1, -1, -1, -1])  # 标记股票涨跌,1为涨,-1为跌

# 创建并拟合保序回归模型
model = IsotonicRegression()
model.fit(momentum_factors, target)

# 预测新的动量因子对应的股票涨跌
new_momentum_factors = np.array([0.5, 0.4, 0.7])
predicted_target = model.predict(new_momentum_factors)

# 输出预测结果
print(predicted_target)
相关推荐
一条破秋裤19 小时前
一份多光谱数据分析
笔记·数据挖掘·数据分析
cal_20 小时前
数据分析中的拉链表解析
大数据·数据挖掘·数据分析
九章云极AladdinEdu21 小时前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
王小王-1231 天前
基于Python的程序员数据分析与可视化系统的设计与实现
python·数据挖掘·数据分析·招聘数据分析·程序员数据分析·招聘薪资数据分析·智联招聘可视化
Deng9452013141 天前
基于数据挖掘的课程推荐系统研究
人工智能·数据挖掘·数据预处理·基于用户的协同过滤·文本特征提取
kngines1 天前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
HyperAI超神经1 天前
OmniGen2 多模态推理×自我纠正双引擎,引领图像生成新范式;95 万分类标签!TreeOfLife-200M 解锁物种认知新维度
人工智能·数据挖掘·数据集·图像生成·医疗健康·在线教程·数学代码
Monkey的自我迭代2 天前
Python标准库:时间与随机数全解析
前端·python·数据挖掘
kngines2 天前
【力扣(LeetCode)】数据挖掘面试题0003: 356. 直线镜像
leetcode·数据挖掘·直线镜像·对称轴
微光-沫年2 天前
141-CEEMDAN-VMD-Transformer-BiLSTM-ABKDE多变量区间预测模型!
算法·matlab·回归