保序回归与金融时序数据

保序回归在回归问题中的作用是通过拟合一个单调递增或递减的函数,来保持数据点的相对顺序特性。

一、保序回归的作用

主要用于以下情况:

  1. 有序数据:当输入数据具有特定的顺序关系时,保序回归可以帮助保持这种顺序关系。例如,时间序列数据、评级数据或排序数据等。

  2. 无噪声数据:如果数据中存在噪声,即一些离群点或错误标记的数据点,保序回归可能会受到这些异常值的干扰。因此,保序回归更适用于相对干净且有序的数据。

  3. 数据平滑:保序回归可以用于平滑数据,消除数据中的波动和噪声,以获得更加稳定的趋势。

  4. 非线性关系:当数据中存在非线性的关系时,保序回归可以更好地捕捉这种非线性关系,而不受线性回归的限制。

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.isotonic import IsotonicRegression

# 构造示例数据
X = np.array([1, 2, 3, 4, 5])  # 自变量
y = np.array([2, 3, 1, 5, 4])  # 因变量

# 创建并训练保序回归模型
model = IsotonicRegression()
model.fit(X, y)

# 预测新的数据点
new_X = np.array([5, 6, 5.5])
predicted_y = model.predict(new_X)

# 输出预测结果
print(predicted_y)

二、保序回归处理金融股票时序数据并可视化

python 复制代码
data = {}
data['close'] = pd.read_pickle('close.pkl')['stock_1'].iloc[-500:]
data['open'] = pd.read_pickle('open.pkl')['stock_1'].iloc[-500:]

n = len(data['close'])
X = np.array(data['open'].values)
y = data['close'].values

from sklearn.isotonic import IsotonicRegression

ir=IsotonicRegression()
y_ir=ir.fit_transform(X,y)

plt.figure(figsize=(15,6))
plt.plot(X,y,'r.',markersize=12)
plt.plot(X,y_ir,'g.-',markersize=12)
plt.legend(('Data','Isotonic Fit'))
plt.title("Isotonic Regression")
plt.show()

三、一个小例子

  1. 收集了股票价格和动量因子的历史数据,其中 stock_prices 是股票价格的时间序列数据,momentum_factors 是相应的动量因子数据,target 是标记股票涨跌的目标变量。

  2. 创建一个 IsotonicRegression 对象 model,并使用 fit 方法拟合模型,将动量因子作为自变量,目标变量作为因变量进行训练。

  3. 定义了新的动量因子 new_momentum_factors,并使用 predict 方法对其进行预测,得到相应的股票涨跌预测结果 predicted_target。

python 复制代码
# 收集股票价格和动量因子的历史数据
stock_prices = np.array([100, 110, 120, 130, 120, 110, 100])
momentum_factors = np.array([0.5, 0.7, 0.9, 1.2, 0.8, 0.6, 0.4])
target = np.array([1, 1, 1, -1, -1, -1, -1])  # 标记股票涨跌,1为涨,-1为跌

# 创建并拟合保序回归模型
model = IsotonicRegression()
model.fit(momentum_factors, target)

# 预测新的动量因子对应的股票涨跌
new_momentum_factors = np.array([0.5, 0.4, 0.7])
predicted_target = model.predict(new_momentum_factors)

# 输出预测结果
print(predicted_target)
相关推荐
周杰伦_Jay10 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
云动雨颤1 天前
爬虫是怎么工作的?从原理到用途
爬虫·python·数据挖掘
Learn Beyond Limits1 天前
Clustering vs Classification|聚类vs分类
人工智能·算法·机器学习·ai·分类·数据挖掘·聚类
chao1898441 天前
遗传算法与粒子群算法优化BP提高分类效果
算法·分类·数据挖掘
诸葛务农1 天前
光电对抗分类及外场静爆试验操作规程
人工智能·嵌入式硬件·分类·数据挖掘
思通数科多模态大模型1 天前
扑灭斗殴的火苗:AI智能守护如何为校园安全保驾护航
大数据·人工智能·深度学习·安全·目标检测·计算机视觉·数据挖掘
Chef_Chen2 天前
数据科学每日总结--Day13--数据挖掘
人工智能·数据挖掘
on_pluto_2 天前
【推荐系统14】数据分析:以阿里天池新闻推荐为例学习
人工智能·学习·数据挖掘·数据分析·推荐算法
数学难2 天前
数据分析学习路线
学习·数据挖掘·数据分析
api_180079054602 天前
【技术教程】Python/Node.js 调用拼多多商品详情 API 示例详解
大数据·开发语言·python·数据挖掘·node.js