目标跟踪数据集分享

360VOT: A New Benchmark Dataset for Omnidirectional Visual Object Tracking

360VOT 是一个新的大规模全景追踪基准数据集,旨在为全景视觉物体追踪提供支持。这个数据集包含了 120 个序列,总计超过 11.3 万张高分辨率帧,采用等距投影。追踪的目标涵盖了 32 个不同的类别,场景多样。

此外,还提供了 4 种无偏差的ground truth,包括(旋转)边界框和(旋转)边界视场,以及为 360° 图像量身定制的新指标,从而可以准确评估全景跟踪性能。

相关推荐
wyw00004 分钟前
目标检测之Faster R-CNN
计算机视觉
peixiuhui18 分钟前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
bing.shao1 小时前
golang 做AI任务执行
开发语言·人工智能·golang
鼎道开发者联盟1 小时前
2025中国AI开源生态报告发布,鼎道智联助力产业高质量发展
人工智能·开源·gui
贾维思基1 小时前
告别RPA和脚本!视觉推理Agent,下一代自动化的暴力解法
人工智能·agent
P-ShineBeam1 小时前
引导式问答-对话式商品搜索-TRACER
人工智能·语言模型·自然语言处理·知识图谱
j_jiajia1 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me1 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG2 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习
阿里云大数据AI技术2 小时前
漫画说:为什么你的“增量计算”越跑越慢?——90%的实时数仓团队都踩过的坑,藏在这几格漫画里
大数据·人工智能