2023_Spark_实验十九:SparkStreaming入门案例

SparkStreaming入门案例

一、准备工作
二、任务分析
三、官网案例
四、开发NetWordCount

一、准备工作


  • 实验环境:netcat
  • 安装nc:yum install -y nc

二、任务分析


将nc作为服务器端,用户产生数据;启动sparkstreaming案例中的客户端程序,监听服务器端发送过来的数据,并对其数据进行词频统计,即为流式的wordcount入门程序

三、官网案例


启动nc作为服务器端,执行:nc -l 1234,并输入测试数据,如图所示:

  • 启动客户端,执行:
    bin/run-example streaming.NetworkWordCount localhost 1234

注意):如果要执行本例,必须确保机器 cpu 核数大于 2

四、开发NetWordCount

  1. 创建maven工程
  2. 添加maven依赖,即在pom.xml中添加streamming的依赖,如下(如果之前实验已经添加,就不用再添加,如果之前未添加,则需要添加该依赖)
XML 复制代码
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>2.1.1</version>
</dependency>

3.开发NetWordCount程序

Scala 复制代码
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object StreamingTest {
def main(args: Array[String]): Unit = {
val sparkConf = newSparkConf().setMaster("local[2]").setAppName("StreamingTest")
val streamingContext = new StreamingContext(sparkConf, Seconds(5))

// 创建DStream对象,并链接到nc服务器端
val ris: ReceiverInputDStream[String] = streamingContext.socketTextStream("192.168.245.110", 1234,StorageLevel.MEMORY_AND_DISK)
// 采集数据,并处理数据
val ds: DStream[String] = ris.flatMap(_.split(" "))
println(ris)
// 统计单词
val resultDS: DStream[(String, Int)] = ds.map(x => (x, 1)).reduceByKey(_ + _)
// 打印结果
resultDS.print()
// 启动实时计算
streamingContext.start()
// 等待计算结束
streamingContext.awaitTermination()
}
}

4.先在虚拟机上启动nc服务器:nc -l 1234,并输入测试数据,如图
5.然后运行程序
6.运行结果如下

参考:
https://www.shuzhiduo.com/A/gVdneZLa5W/

相关推荐
潇洒畅想2 小时前
分布式锁极端场景解决方案总结
分布式
StarChainTech4 小时前
电动车租赁中的智能管理:电子围栏技术如何改变出行行业
大数据·人工智能·微信小程序·小程序·团队开发·软件需求·共享经济
能源系统预测和优化研究4 小时前
【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
大数据·算法
面向Google编程4 小时前
Flink源码阅读:双流操作
大数据·flink
潇洒畅想4 小时前
分布式消息中间件处理(幂等,顺序,重试,积压)方案总结
分布式
sysinside5 小时前
Elasticsearch 9.2 发布 - 分布式搜索和分析引擎
大数据·分布式·elasticsearch
kkce5 小时前
vsping 推出海外检测节点的核心目的
大数据·网络·人工智能
Jinkxs5 小时前
Elasticsearch - 倒排索引的压缩算法 Elasticsearch 如何节省空间
大数据·elasticsearch·搜索引擎
思通数科多模态大模型8 小时前
门店 AI 清洁系统:AI 语义分割 + 机器人清洁
大数据·人工智能·算法·目标检测·计算机视觉·自然语言处理·机器人
南方略咨询8 小时前
南方略咨询:环保行业进入深水区,营销管理能力正在拉开企业差距
大数据·人工智能