2023_Spark_实验十九:SparkStreaming入门案例

SparkStreaming入门案例

一、准备工作
二、任务分析
三、官网案例
四、开发NetWordCount

一、准备工作


  • 实验环境:netcat
  • 安装nc:yum install -y nc

二、任务分析


将nc作为服务器端,用户产生数据;启动sparkstreaming案例中的客户端程序,监听服务器端发送过来的数据,并对其数据进行词频统计,即为流式的wordcount入门程序

三、官网案例


启动nc作为服务器端,执行:nc -l 1234,并输入测试数据,如图所示:

  • 启动客户端,执行:
    bin/run-example streaming.NetworkWordCount localhost 1234

注意):如果要执行本例,必须确保机器 cpu 核数大于 2

四、开发NetWordCount

  1. 创建maven工程
  2. 添加maven依赖,即在pom.xml中添加streamming的依赖,如下(如果之前实验已经添加,就不用再添加,如果之前未添加,则需要添加该依赖)
XML 复制代码
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>2.1.1</version>
</dependency>

3.开发NetWordCount程序

Scala 复制代码
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object StreamingTest {
def main(args: Array[String]): Unit = {
val sparkConf = newSparkConf().setMaster("local[2]").setAppName("StreamingTest")
val streamingContext = new StreamingContext(sparkConf, Seconds(5))

// 创建DStream对象,并链接到nc服务器端
val ris: ReceiverInputDStream[String] = streamingContext.socketTextStream("192.168.245.110", 1234,StorageLevel.MEMORY_AND_DISK)
// 采集数据,并处理数据
val ds: DStream[String] = ris.flatMap(_.split(" "))
println(ris)
// 统计单词
val resultDS: DStream[(String, Int)] = ds.map(x => (x, 1)).reduceByKey(_ + _)
// 打印结果
resultDS.print()
// 启动实时计算
streamingContext.start()
// 等待计算结束
streamingContext.awaitTermination()
}
}

4.先在虚拟机上启动nc服务器:nc -l 1234,并输入测试数据,如图
5.然后运行程序
6.运行结果如下

参考:
https://www.shuzhiduo.com/A/gVdneZLa5W/

相关推荐
2501_924064117 分钟前
2025年APP隐私合规测试主流方法与工具深度对比
大数据·网络·人工智能
Godson_beginner14 分钟前
Elasticsearch 学习笔记
java·大数据·elasticsearch·搜索引擎
用户91743965393 小时前
Elasticsearch Percolate Query使用优化案例-从2000到500ms
java·大数据·elasticsearch
左灯右行的爱情4 小时前
Kafka专辑- 整体架构
分布式·架构·kafka
wang_yb4 小时前
格式塔原理:数据可视化如何引导观众的注意力
大数据·databook
武子康5 小时前
大数据-200 决策树信息增益详解:信息熵、ID3 选特征与 Python 最佳切分实现
大数据·后端·机器学习
小王毕业啦5 小时前
2000-2023年 上市公司-企业组织惯性数据
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
山上春6 小时前
Odoo 分布式单体与微服务模式深度对比研究报告
分布式·微服务·架构
左灯右行的爱情6 小时前
Kafka专辑 : 生产者写入路径
分布式·kafka·linq
小北方城市网6 小时前
第 3 课:前后端全栈联动核心 —— 接口规范 + AJAX + 跨域解决(打通前后端壁垒)
java·大数据·网络·python