spark stream入门案例:netcat准实时处理wordCount(scala 编程)

目录

案例需求

代码

结果

解析


案例需求:

使用netcat工具向9999端口不断的发送数据,通过SparkStreaming读取端口数据并统计不同单词出现的次数

-- 1. Spark从socket中获取数据:一行一行的获取

-- 2. Driver程序执行时,streaming处理过程不能结束

-- 3. 采集器在正常情况下启动后就不应该停止,除非特殊情况

-- 4. 采集器位于一个executor中,是一个线程,执行时需要一个核,如果设定的总核数为1时,那么在运行时因为没有核数,所以不会有打印结果,所以sparkStreaming使用的核数至少为2个

-- 5. print()方法,默认是打印10行结果

-- 6. netcat的指令:

Scala 复制代码
      在Windows下:nc -lp 9999
      在linux下: nc -lk 9999
代码:
Scala 复制代码
package cn.olo.stream

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object StreamDemo {
  def main(args: Array[String]): Unit = {
    // 连接SparkStreaming
    val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkStreaming")
    /*
  1.方法:StreamingContext(形参)
  2.形参:
    形参1:conf: SparkConf:spark配置对象
    形参2:batchDuration: Duration:采集时间
 */
    val ssc = new StreamingContext(sparkConf,Seconds(5))

    // 需求:使用netcat工具向9999端口不断的发送数据,通过SparkStreaming读取端口数据并统计不同单词出现的次数

    // 1. 获取netcat工具9999端口的连接,并开始接收数据
    // 从socket中获取数据:一行一行的获取

    val socketDS: ReceiverInputDStream[String] = ssc.socketTextStream("localhost",9999)

    // 2. 数据处理
    val wordDS: DStream[String] = socketDS.flatMap(_.split(" "))

    val wordToSumDS: DStream[(String, Int)] = wordDS.map((_,1)).reduceByKey(_ + _ )

    // 3. 打印数据
    wordToSumDS.print()

    // 4. Driver程序执行时,streaming处理过程不能结束

    // 采集器在正常情况下启动后就不应该停止,除非特殊情况

    // 启动采集器
    ssc.start()

    // 等待采集器的结束
    ssc.awaitTermination()


  }

}
结果:

解析:

a、采集周期时间之间,每一个采集周期生成一个RDD,按照时间的顺序依次进行

b、在每一个采集周期内,会执行wordcount计算,最终得出:统计出每一个采集周期时间的wordcount

相关推荐
芯盾时代20 小时前
CIPS系统迎来重大升级
大数据·人工智能·跨境支付·芯盾时代
ManageEngineITSM20 小时前
重构可见性:IT资产管理的下一次觉醒
大数据·人工智能·重构·自动化·itsm·工单系统
计算机编程-吉哥21 小时前
大数据毕业设计项目推荐 基于大数据的广西药店数据可视化分析系统 1.65w条数据【大数据毕业设计项目选题】
大数据·hadoop·毕业设计·计算机毕设·大数据毕业设计选题推荐
门框研究员21 小时前
一次实时采集任务延迟问题的完整复盘(Flink CDC)
大数据·flink
艾莉丝努力练剑21 小时前
【C++:map和set的使用】C++ map/multimap完全指南:从红黑树原理入门到高频算法实战
大数据·开发语言·c++·人工智能·stl·map
汤姆yu21 小时前
基于大数据的全国降水可视化分析预测系统
大数据·开发语言·python
ManageEngineITSM1 天前
技术的秩序:IT资产与配置管理的现代重构
大数据·运维·数据库·重构·工单系统
一周困⁸天.1 天前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理1 天前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
workflower1 天前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发