3、Kafka Broker

4.1 Kafka Broker 工作流程

4.1.1 Zookeeper 存储的 Kafka 信息

(1)启动 Zookeeper 客户端。

java 复制代码
[hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh

(2)通过 ls 命令可以查看 kafka 相关信息。

java 复制代码
[zk: localhost:2181(CONNECTED) 2] ls /kafka

4.1.2 Kafka Broker 总体工作流程

1)模拟 Kafka 上下线,Zookeeper 中数据变化

(1)查看/kafka/brokers/ids 路径上的节点。

java 复制代码
[zk: localhost:2181(CONNECTED) 2] ls /kafka/brokers/ids
[0, 1, 2]

(2)查看/kafka/controller 路径上的数据。

java 复制代码
[zk: localhost:2181(CONNECTED) 15] get /kafka/controller
{"version":1,"brokerid":0,"timestamp":"1637292471777"}

(3)查看/kafka/brokers/topics/first/partitions/0/state 路径上的数据

java 复制代码
[zk: localhost:2181(CONNECTED) 16] get 
/kafka/brokers/topics/first/partitions/0/state
{"controller_epoch":24,"leader":0,"version":1,"leader_epoch":18,"
isr":[0,1,2]}

(4)停止 hadoop104 上的 kafka。

java 复制代码
[hadoop104 kafka]$ bin/kafka-server-stop.sh

(5)再次查看/kafka/brokers/ids 路径上的节点。

java 复制代码
[zk: localhost:2181(CONNECTED) 3] ls /kafka/brokers/ids
[0, 1]

(6)再次查看/kafka/controller 路径上的数据。

java 复制代码
[zk: localhost:2181(CONNECTED) 15] get /kafka/controller
{"version":1,"brokerid":0,"timestamp":"1637292471777"}

(7)再次查看/kafka/brokers/topics/first/partitions/0/state 路径上的数据。

java 复制代码
[zk: localhost:2181(CONNECTED) 16] get 
/kafka/brokers/topics/first/partitions/0/state
{"controller_epoch":24,"leader":0,"version":1,"leader_epoch":18,"
isr":[0,1]}

(8)启动 hadoop104 上的 kafka。

java 复制代码
[hadoop104 kafka]$ bin/kafka-server-start.sh -
daemon ./config/server.properties

(9)再次观察(1)、(2)、(3)步骤中的内容

4.1.3 Broker 重要参数

  1. 节点服役和退役

2.1 服役新节点

1)新节点准备

(1)关闭 hadoop104,并右键执行克隆操作。

(2)开启 hadoop105,并修改 IP 地址。

java 复制代码
[root@hadoop104 ~]# vim /etc/sysconfig/network-scripts/ifcfgens33
DEVICE=ens33
TYPE=Ethernet
ONBOOT=yes
BOOTPROTO=static
NAME="ens33"
IPADDR=192.168.10.105
PREFIX=24
GATEWAY=192.168.10.2
DNS1=192.168.10.2

(3)在 hadoop105 上,修改主机名称为 hadoop105。

java 复制代码
[root@hadoop104 ~]# vim /etc/hostname
hadoop105

(4)重新启动 hadoop104、hadoop105。

(5)修改 haodoop105 中 kafka 的 broker.id 为 3。

(6)删除 hadoop105 中 kafka 下的 datas 和 logs。

java 复制代码
[hadoop105 kafka]$ rm -rf datas/* logs/*

(7)启动 hadoop102、hadoop103、hadoop104 上的 kafka 集群。

java 复制代码
[hadoop102 ~]$ zk.sh start
[hadoop102 ~]$ kf.sh start

(8)单独启动 hadoop105 中的 kafka。

java 复制代码
[hadoop105 kafka]$ bin/kafka-server-start.sh -
daemon ./config/server.properties

2)执行负载均衡操作

(1)创建一个要均衡的主题。

java 复制代码
[hadoop102 kafka]$ vim topics-to-move.json
{
 "topics": [
 {"topic": "first"}
 ],
 "version": 1
}

(2)生成一个负载均衡的计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --topics-to-move-json-file 
topics-to-move.json --broker-list "0,1,2,3" --generate
Current partition replica assignment
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[0,2,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,0,2],"log_dirs":["any","
any","any"]}]}
Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,3,0],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,0,1],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,1,2],"log_dirs":["any","
any","any"]}]}

(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2、broker3 中)。

java 复制代码
[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

java 复制代码
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,3,0],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,0,1],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,1,2],"log_dirs":["any","
any","any"]}]}

(4)执行副本存储计划。

[atguigu@hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --

bootstrap-server hadoop102:9092 --reassignment-json-file

increase-replication-factor.json --execute

(5)验证副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition first-0 is complete.
Reassignment of partition first-1 is complete.
Reassignment of partition first-2 is complete.
Clearing broker-level throttles on brokers 0,1,2,3
Clearing topic-level throttles on topic first

4.2.2 退役旧节点

1)执行负载均衡操作

先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡。

(1)创建一个要均衡的主题。

java 复制代码
[hadoop102 kafka]$ vim topics-to-move.json
{
 "topics": [
 {"topic": "first"}
 ],
 "version": 1
}

(2)创建执行计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --topics-to-move-json-file 
topics-to-move.json --broker-list "0,1,2" --generate
Current partition replica assignment
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,2,3],"log_dirs":["any","
any","any"]}]}
Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[0,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,2,0],"log_dirs":["any","
any","any"]}]}

(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2 中)。

java 复制代码
[hadoop102 kafka]$ vim increase-replication-factor.json
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[0,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,2,0],"log_dirs":["any","
any","any"]}]}

(4)执行副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

(5)验证副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition first-0 is complete.
Reassignment of partition first-1 is complete.
Reassignment of partition first-2 is complete.
Clearing broker-level throttles on brokers 0,1,2,3
Clearing topic-level throttles on topic first

2)执行停止命令

在 hadoop105 上执行停止命令即可。

java 复制代码
[hadoop105 kafka]$ bin/kafka-server-stop.sh

4.3 Kafka 副本

4.3.1 副本基本信息

(1)Kafka 副本作用:提高数据可靠性。

(2)Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据可靠性;太多副本会

增加磁盘存储空间,增加网络上数据传输,降低效率。

(3)Kafka 中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发往 Leader,

然后 Follower 找 Leader 进行同步数据。

(4)Kafka 分区中的所有副本统称为 AR(Assigned Repllicas)。

AR = ISR + OSR

ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送

通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms

参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。

OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本。

4.3.2 Leader 选举流程

Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群

broker 的上下线,所有 topic 的分区副本分配和 Leader 选举等工作。

Controller 的信息同步工作是依赖于 Zookeeper 的

(1)创建一个新的 topic,4 个分区,4 个副本

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --topic atguigu1 --partitions 4 --replication-factor 
4
Created topic atguigu1.

(2)查看 Leader 分布情况

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 3 Replicas: 3,0,2,1 Isr: 3,0,2,1
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,2,3,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,3,1,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 2,1,0,3

(3)停止掉 hadoop105 的 kafka 进程,并查看 Leader 分区情况

java 复制代码
[hadoop105 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,2,1
pic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,2,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 2,1,0

(4)停止掉 hadoop104 的 kafka 进程,并查看 Leader 分区情况

java 复制代码
[hadoop104 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0

(5)启动 hadoop105 的 kafka 进程,并查看 Leader 分区情况

java 复制代码
[hadoop105 kafka]$ bin/kafka-server-start.sh -daemon config/server.properties
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1,3
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0,3
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,3
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0,3

(6)启动 hadoop104 的 kafka 进程,并查看 Leader 分区情况

java 复制代码
[hadoop104 kafka]$ bin/kafka-server-start.sh -daemon config/server.properties
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1,3,2
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0,3,2
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,3,2
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0,3,2

(7)停止掉 hadoop103 的 kafka 进程,并查看 Leader 分区情况

java 复制代码
[hadoop103 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,3,2
Topic: atguigu1 Partition: 1 Leader: 2 Replicas: 1,2,3,0 Isr: 0,3,2
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,3,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 0,3,2

4.3.3 Leader 和 Follower 故障处理细节

4.3.4 分区副本分配

如果 kafka 服务器只有 4 个节点,那么设置 kafka 的分区数大于服务器台数,在 kafka

底层如何分配存储副本呢?

1)创建 16 分区,3 个副本

(1)创建一个新的 topic,名称为 second。

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 16 --replication-factor 3 --
topic second

(2)查看分区和副本情况。

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic second
Topic: second4 Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 1 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 2 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 3 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1
Topic: second4 Partition: 4 Leader: 0 Replicas: 0,2,3 Isr: 0,2,3
Topic: second4 Partition: 5 Leader: 1 Replicas: 1,3,0 Isr: 1,3,0
Topic: second4 Partition: 6 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: second4 Partition: 7 Leader: 3 Replicas: 3,1,2 Isr: 3,1,2
Topic: second4 Partition: 8 Leader: 0 Replicas: 0,3,1 Isr: 0,3,1
Topic: second4 Partition: 9 Leader: 1 Replicas: 1,0,2 Isr: 1,0,2
Topic: second4 Partition: 10 Leader: 2 Replicas: 2,1,3 Isr: 2,1,3
Topic: second4 Partition: 11 Leader: 3 Replicas: 3,2,0 Isr: 3,2,0
Topic: second4 Partition: 12 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 13 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 14 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 15 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1

4.3.5 生产经验------手动调整分区副本存储

生产经验------手动调整分区副本存储

在生产环境中,每台服务器的配置和性能不一致,但是Kafka只会根据自己的代码规则创建对应的分区副

本,就会导致个别服务器存储压力较大。所有需要手动调整分区副本的存储。

需求:创建一个新的topic,4个分区,两个副本,名称为three。将 该topic的所有副本都存储到broker0和

broker1两台服务器上。

手动调整分区副本存储的步骤如下:

(1)创建一个新的 topic,名称为 three。

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 4 --replication-factor 2 --
topic three

(2)查看分区副本存储情况。

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic three

(3)创建副本存储计划(所有副本都指定存储在 broker0、broker1 中)。

java 复制代码
[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

java 复制代码
{
"version":1,
"partitions":[{"topic":"three","partition":0,"replicas":[0,1]},
{"topic":"three","partition":1,"replicas":[0,1]},
{"topic":"three","partition":2,"replicas":[1,0]},
{"topic":"three","partition":3,"replicas":[1,0]}]
}

(4)执行副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

(5)验证副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify

(6)查看分区副本存储情况。

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic three

4.3.6 生产经验------Leader Partition 负载平衡

4.3.7 生产经验------增加副本因子

在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的

增加需要先制定计划,然后根据计划执行。

1)创建 topic

java 复制代码
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 3 --replication-factor 1 --
topic four

2)手动增加副本存储

(1)创建副本存储计划(所有副本都指定存储在 broker0、broker1、broker2 中)。

java 复制代码
[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

java 复制代码
{"version":1,"partitions":[{"topic":"four","partition":0,"replica
s":[0,1,2]},{"topic":"four","partition":1,"replicas":[0,1,2]},{"t
opic":"four","partition":2,"replicas":[0,1,2]}]}

(2)执行副本存储计划。

java 复制代码
[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

4.4 文件存储

4.4.1 文件存储机制

1)Topic 数据的存储机制

2)思考:Topic 数据到底存储在什么位置?

(1)启动生产者,并发送消息。

java 复制代码
[hadoop102 kafka]$ bin/kafka-console-producer.sh --
bootstrap-server hadoop102:9092 --topic first
>hello world

(2)查看 hadoop102(或者 hadoop103、hadoop104)的/opt/module/kafk

a/datas/first-1(first-0、first-2)路径上的文件。

java 复制代码
[hadoop104 first-1]$ ls
00000000000000000092.index
00000000000000000092.log
00000000000000000092.snapshot
00000000000000000092.timeindex
leader-epoch-checkpoint
partition.metadata

(3)直接查看 log 日志,发现是乱码。

java 复制代码
[hadoop104 first-1]$ cat 00000000000000000092.log 
\CYnF|©|©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ"hello world

(4)通过工具查看 index 和 log 信息。

java 复制代码
[hadoop104 first-1]$ kafka-run-class.sh kafka.tools.DumpLogSegments 
--files ./00000000000000000000.index 
Dumping ./00000000000000000000.index
offset: 3 position: 152
[atguigu@hadoop104 first-1]$ kafka-run-class.sh kafka.tools.DumpLogSegments 
--files ./00000000000000000000.log
Dumping datas/first-0/00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 1 count: 2 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
0 CreateTime: 1636338440962 size: 75 magic: 2 compresscodec: none crc: 2745337109 isvalid: 
true
baseOffset: 2 lastOffset: 2 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
75 CreateTime: 1636351749089 size: 77 magic: 2 compresscodec: none crc: 273943004 isvalid: 
true
baseOffset: 3 lastOffset: 3 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
152 CreateTime: 1636351749119 size: 77 magic: 2 compresscodec: none crc: 106207379 isvalid: 
true
baseOffset: 4 lastOffset: 8 count: 5 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
229 CreateTime: 1636353061435 size: 141 magic: 2 compresscodec: none crc: 157376877 isvalid: 
true
baseOffset: 9 lastOffset: 13 count: 5 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
370 CreateTime: 1636353204051 size: 146 magic: 2 compresscodec: none crc: 4058582827 isvalid: 
true

3)index 文件和 log 文件详解

4.4.2 文件清理策略

Kafka 中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。

⚫ log.retention.hours,最低优先级小时,默认 7 天。

⚫ log.retention.minutes,分钟。

log.retention.ms,最高优先级毫秒。

log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。

那么日志一旦超过了设置的时间,怎么处理呢?

Kafka 中提供的日志清理策略有 delete 和 compact 两种。

1)delete 日志删除:将过期数据删除

⚫ log.cleanup.policy = delete 所有数据启用删除策略

(1)基于时间:默认打开。以 segment 中所有记录中的最大时间戳作为该文件时间戳。

(2)基于大小:默认关闭。超过设置的所有日志总大小,删除最早的 segment。

log.retention.bytes,默认等于-1,表示无穷大。

思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?

2)compact 日志压缩

4.5 高效读写数据

1)Kafka 本身是分布式集群,可以采用分区技术,并行度高

2)读数据采用稀疏索引,可以快速定位要消费的数据

3)顺序写磁盘

Kafka 的 producer 生产数据,要写入到 log 文件中,写的过程是一直追加到文件末端,

为顺序写。官网有数据表明,同样的磁盘,顺序写能到 600M/s,而随机写只有 100K/s。这

与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。

4)页缓存 + 零拷贝技术

相关推荐
梦想blog20 分钟前
Spring Boot + Redisson 封装分布式锁
spring boot·分布式·后端·
一起喝芬达20101 小时前
Spring Boot中使用Zookeeper实现分布式锁的案例
spring boot·分布式·java-zookeeper
编程、小哥哥1 小时前
Zookeeper在中间件的应用和在Spring Boot业务系统中实现分布式锁和注册中心的解决方案
分布式·zookeeper·java-zookeeper
幽弥千月1 小时前
【中间件】docker+kafka单节点部署---zookeeper模式
docker·中间件·kafka
howard20051 小时前
搭建ZooKeeper分布式集群
分布式·zookeeper
费曼乐园1 小时前
Zookeeper中version-2目录下存放数据
分布式·zookeeper·云原生
凡许真1 小时前
RabbitMQ生产消息【交换机、路由键】与消费消息的简单使用
分布式·rabbitmq·消费·交换机·生产·路由键
sj11637394032 小时前
Kafka配置公网或NLB访问(TCP代理)
kafka
斯普信专业组3 小时前
Kafka安全优化文档:漏洞修复到安全加固
kafka
斯普信专业组9 小时前
探秘Kafka源码:关键内容解析
kafka