一. SGA-Eliminating Gradient Conflict in Reference-based Line-Art Colorization(2022ECCV)
1. 修改config.yml
修改前
python
EPOCH: 40
BATCH_SIZE: 16
NUM_WORKER : 4
TRAIN_DIR : 'anime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild
修改后
python
EPOCH: 400
BATCH_SIZE: 8
NUM_WORKER : 0
TRAIN_DIR : 'nighttime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild
添加
python
USE_TENSORBOARD : 'True'
2. 修改data_loader.py
添加
python
elif config['TRAINING_CONFIG']['TRAIN_DIR'] == 'nighttime':
self.img_dir = r'F:\RefDataset\KAIST\train\refB'
self.skt_dir = r'F:\RefDataset\KAIST\train\nightA'
self.data_list = glob.glob(os.path.join(self.img_dir, '*.jpg'))
3. 修改model.py
python
self.gcn3 = Gconv(in_features=channel, out_features=channel)
self.gcn4 = Gconv(in_features=channel, out_features=channel)
修改为
python
self.gcn3 = Gconv(in_ch=channel, out_ch=channel)
self.gcn4 = Gconv(in_ch=channel, out_ch=channel)
二. SCFT-Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence(2020CVPR)
和SGA修改一致
1. 修改config.yml
修改前
python
EPOCH: 40
BATCH_SIZE: 16
NUM_WORKER : 4
TRAIN_DIR : 'anime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild
修改后
python
EPOCH: 400
BATCH_SIZE: 8
NUM_WORKER : 0
TRAIN_DIR : 'nighttime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild
添加
python
USE_TENSORBOARD : 'True'
2. 修改data_loader.py
添加
python
elif config['TRAINING_CONFIG']['TRAIN_DIR'] == 'nighttime':
self.img_dir = r'F:\RefDataset\KAIST\train\refB'
self.skt_dir = r'F:\RefDataset\KAIST\train\nightA'
self.data_list = glob.glob(os.path.join(self.img_dir, '*.jpg'))