参考图像彩色化网络修改流程(自用版)

一. SGA-Eliminating Gradient Conflict in Reference-based Line-Art Colorization(2022ECCV)

1. 修改config.yml
修改前

python 复制代码
  EPOCH: 40
  BATCH_SIZE: 16
  NUM_WORKER : 4
  TRAIN_DIR : 'anime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild

修改后

python 复制代码
  EPOCH: 400
  BATCH_SIZE: 8
  NUM_WORKER : 0
  TRAIN_DIR : 'nighttime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild

添加

python 复制代码
USE_TENSORBOARD : 'True'

2. 修改data_loader.py
添加

python 复制代码
 elif config['TRAINING_CONFIG']['TRAIN_DIR'] == 'nighttime':
     self.img_dir = r'F:\RefDataset\KAIST\train\refB'
     self.skt_dir = r'F:\RefDataset\KAIST\train\nightA'
     self.data_list = glob.glob(os.path.join(self.img_dir, '*.jpg'))

3. 修改model.py

python 复制代码
self.gcn3 = Gconv(in_features=channel, out_features=channel)
self.gcn4 = Gconv(in_features=channel, out_features=channel)

修改为

python 复制代码
self.gcn3 = Gconv(in_ch=channel, out_ch=channel)
self.gcn4 = Gconv(in_ch=channel, out_ch=channel)

二. SCFT-Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence(2020CVPR)

和SGA修改一致
1. 修改config.yml
修改前

python 复制代码
  EPOCH: 40
  BATCH_SIZE: 16
  NUM_WORKER : 4
  TRAIN_DIR : 'anime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild

修改后

python 复制代码
  EPOCH: 400
  BATCH_SIZE: 8
  NUM_WORKER : 0
  TRAIN_DIR : 'nighttime' # 'anime' or 'afhq_cat' or 'afhq_dog' or afhq_wild

添加

python 复制代码
USE_TENSORBOARD : 'True'

2. 修改data_loader.py
添加

python 复制代码
 elif config['TRAINING_CONFIG']['TRAIN_DIR'] == 'nighttime':
     self.img_dir = r'F:\RefDataset\KAIST\train\refB'
     self.skt_dir = r'F:\RefDataset\KAIST\train\nightA'
     self.data_list = glob.glob(os.path.join(self.img_dir, '*.jpg'))
相关推荐
飞哥数智坊1 天前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯1 天前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp