二叉树的前序、中序、后序遍历 -- 非递归方式实现

目录

前序遍历:根 左 右

实现思想:

需要创建一个栈和一个vector容器

栈用来保存最左路径的节点

vector用来保存遍历的数据

1.首先用一个while循环将二叉树的最左路径节点全部压入栈内,同时由于前序遍历的特性,也将该节点的值同时压入vector容器内

2.循环完成后,栈顶元素为二叉树的最左节点。将该节点获取为当前节点后,对栈顶元素进行移除。

3.访问当前节点的右子树。

4.重复循环,直到当前节点为空,或者栈为空。

实现过程:

cpp 复制代码
class Solution
{
public:
	//前序遍历:根 左 右(非递归)
	vector<int> preorderTraversal(TreeNode* root)
	{
		stack<TreeNode*> st;
		vector<int> vec;
		TreeNode* cur = root;
		while (cur || !st.empty())
		{
			while (cur)
			{
				//将二叉树最左路径压入栈内
				st.push(cur);
				//将最左节点的值压入vector内
				vec.push_back(cur->val);
				cur = cur->left;
			}
			//获取最左节点
			cur = st.top();
			//将最左节点从栈内移除
			st.pop();

			//访问右子树
			cur = cur->right;
		}
		return vec;
	}
};

中序遍历:左 根 右

实现思想:

和前序遍历十分类似,不同之处在于将节点值压入vector的位置不一样。

前序遍历是在将二叉树最左路径节点压入栈的同时,也将该节点的值压入vector。

但是中序遍历是要先从最左节点开始进行,因此将节点值压入vector的操作换到第二步完成。

创建一个栈和一个vector容器

栈用来保存最左路径的节点

vector用来保存遍历的数据

1.首先用一个while循环将二叉树的最左路径节点全部压入栈内。

2.循环完成后,栈顶元素为二叉树的最左节点。将该节点获取为当前节点后,对栈顶元素进行移除,并将该节点的值压入vector容器

3.访问当前节点的右子树。

4.重复循环,直到当前节点为空,或者栈为空。

实现过程:

cpp 复制代码
class Solution
{
public:
	//中序遍历:左 根 右(非递归)
	vector<int> inorderTraversal(TreeNode* root)
	{
		stack<TreeNode*> st;
		vector<int> vec;
		TreeNode* cur = root;
		while (cur || !st.empty())
		{
			while (cur)
			{
				//将二叉树最左路径压入栈内
				st.push(cur);
				cur = cur->left;
			}
			//获取最左节点
			cur = st.top();
			//将最左节点从栈内移除
			st.pop();
			//将最左节点的值压入vector内
			vec.push_back(cur->val);

			//访问右子树
			cur = cur->right;
		}
		return vec;
	}
};

后序遍历:左 右 根

实现思想:

创建一个栈和一个vector容器

栈用来保存最左路径的节点

vector用来保存遍历的数据

创建两个指针

一个指向当前节点、一个指向上一栈顶节点

1.首先用一个while循环将二叉树的最左路径节点全部压入栈内。

2.循环完成后,栈顶元素为二叉树的最左节点。将栈顶元素获取为top节点。

3.判断top节点是否可以压入vector,条件为top节点的右子树为空,或者top节点的右子树已经被压入vector。满足条件后将该top节点压入vector,同时将prev更新。

3.如果不满足条件,则访问top节点的右子树。

4.重复循环,直到当前节点为空,或者栈为空。

实现过程:

cpp 复制代码
class Solution
{
public:
	//后序遍历:左 右 根(非递归)
	vector<int> postorderTraversal(TreeNode* root)
	{
		stack<TreeNode*> st;
		TreeNode* cur = root;
		TreeNode* prev;
		vector<int> vec;
		while (cur || !st.empty())
		{
			while (cur)
			{
				st.push(cur);
				cur = cur->left;
			}
			//获取栈顶元素
			TreeNode* top = st.top();
			//判断当前的节点是否可以遍历
			if (top->right == nullptr || top->right == prev)
			{
				vec.push_back(top->val);
				st.pop();
				prev = top;
			}
			else
				//访问右子树
				cur = top->right;
		}
		return vec;
	}
};
相关推荐
百锦再2 小时前
五种常用的web加密算法
前端·算法·前端框架·web·加密·机密
刚入门的大一新生2 小时前
C++初阶-C++入门基础
开发语言·c++
碳基学AI3 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
独家回忆3643 小时前
每日算法-250410
算法
袖清暮雨3 小时前
Python刷题笔记
笔记·python·算法
weixin_428498494 小时前
Visual Studio 中使用 Clang 作为 C/C++ 编译器时,设置优化选项方法
c语言·c++·visual studio
Marzlam4 小时前
一文读懂数据结构
数据结构
菜鸡中的奋斗鸡→挣扎鸡4 小时前
第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
c语言·c++·蓝桥杯
南玖yy4 小时前
探索 C 语言数据结构:从基础到实践
c语言·开发语言·数据结构
风掣长空4 小时前
八大排序——c++版
数据结构·算法·排序算法