C/S架构学习之使用poll实现TCP中型并发服务器

  • poll实现TCP中型并发服务器的流程:
  • 一、创建套接字(socket函数):
  • 通信域选择IPV4网络协议、套接字类型选择流式
c 复制代码
	int sockfd = socket(AF_INET,SOCK_STREAM,0); //通信域选择IPV4、套接字类型选择流式
  • 二、填充服务器的网络信息结构体:
  • 1.定义网络信息结构体变量;
  • 2.求出网络信息结构体变量的内存空间大小,以作备用;
  • 3.网络信息结构体清0
  • 4.使用IPV4网络协议AF_INET
  • 5.在终端输入的服务器端主机的IP地址inet_addr(argv[1])
  • 6.在终端输入的服务器端网络字节序的端口号htons(atoi(argv[2]))
c 复制代码
	struct sockaddr_in serveraddr; //定义网络信息结构体变量
    socklen_t serveraddrlen = sizeof(serveraddr);//求出结构体变量的内存空间大小

    memset(&serveraddr,0,serveraddrlen); //结构体清零

    serveraddr.sin_family = AF_INET;  //使用IPV4网络协议
    serveraddr.sin_addr.s_addr = inet_addr(argv[1]);  //IP地址
    serveraddr.sin_port = htons(atoi(argv[2]));//网络字节序的端口号
  • 三、套接字和服务器的网络信息结构体进行绑定(bind函数):
c 复制代码
	int ret = bind(sockfd,(struct sockaddr *)&serveraddr,serveraddrlen);
  • 四、套接字设置成被动监听(listen函数):
c 复制代码
	int ret1 = listen(sockfd, 5);
  • 五、创建要监听的文件描述符集合并清空文件描述符集合:
c 复制代码
	//创建要监听的文件描述符集合
    struct pollfd new_fds[2048] = {0};
    
    //清空文件描述符集合
    for(int i = 0; i < 2048; ++i)
    {
        new_fds[i].fd = -1;
    }
  • 六、把创建的套接字添加到要监视的集合中:
c 复制代码
	FD_SET(sockfd,&read_fds);
    int fd_max = 0;
    fd_max = fd_max > sockfd ? fd_max : sockfd;
  • 七、套接字添加到要监视的集合中,并且设置要监听的事件:
c 复制代码
	//套接字添加到要监视的集合中
    new_fds[0].fd = sockfd;

    //设置要监听的事件
    new_fds[0].events |= POLLIN;
  • 八、记录文件描述符集合中最大的文件描述符,并且设置超时的时间:
c 复制代码
	//记录文件描述符集合中最大的文件描述符
    int fd_max = 0;
    fd_max = fd_max > sockfd ? fd_max : sockfd;

    //设置超时的时间
    int tm_out = 10000;
  • 九、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(poll函数):
  • poll实现TCP中型并发服务器select实现TCP小型并发服务器区别就是无需每次重置集合,并且可以设置要监视的最大文件描述符的个数,而select至多监视1024个文件描述符
  • poll函数:
c 复制代码
	#include <poll.h>
	int poll(struct pollfd *fds, nfds_t nfds, int timeout);
	/*
	参数:
	
		fds:要监视的文件描述符的集合指向自定义的结构体数据
		
		nfds:fds中已经使用的项目的个数
		
		timeout:超时时间单位是毫秒  
		
				设置成10000 表示10s
				
				-1	永久阻塞
				
				0	非阻塞
	返回值:
	
		0		超时
		-1		出错 重置错误码
		正数	成功 返回的就绪的文件描述符的个数
	*/
			struct pollfd {
			   int   fd;         /* 文件描述符 设置成-1 内核就不再监视这一位了*/
			   short events;     /* 要监视的事件 */
			   short revents;    /* 返回的事件 */
			};
			/*
			要监视的事件是用位运算或起来的
			
			要监视的事件放在events字段,而实际就绪的事件在revents字段返回
			
			POLLIN	读事件
			
			POLLOUT	写时间
			
			POLLERR	异常事件
			*/
c 复制代码
		if(-1 == (ret = poll(new_fds,fd_max,tm_out)))
        {
            perror("poll error");
            exit(-1);
        }
        else if(0 == ret)
        {
            puts("timeout!!!!!");
            putchar('\n');
            continue;
        }
  • 十、遍历文件描述符集合,判断哪些文件描述符已经准备就绪:
c 复制代码
		for(k = 0; k <= fd_max && ret != 0; ++k)
        {   
				...
		}
  • 十一、找到实际就绪的事件的文件描述符,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
c 复制代码
           //找到实际就绪的事件的文件描述符
            if(0 != (new_fds[k].revents & POLLIN))
            {
                //说明有新的客户端连接服务器
                if(new_fds[k].fd == sockfd)
                {
                    if(-1 == (accept_fd = accept(sockfd,NULL,NULL)))
                    {
                        perror("accept error");
                        exit(-1);
                    
                    }

                    printf("客户端[%d]连接到服务器\n",accept_fd);

                    //将新连接的客户端的套接字添加到要监视的集合中

                    //遍历文件描述符集合,给新的文件描述符找一个位置
                    for(j = 0; j < 2048; j++)
                    {
                        if(-1 == new_fds[j].fd)
                        {
                            new_fds[j].fd = accept_fd;
                            new_fds[j].events |= POLLIN;

                            fd_max = fd_max > accept_fd ? fd_max : accept_fd;
                            break;
                        }
                    }
                    if(2048 == j)
                    {
                        //此时集合容量满了
                        close(accept_fd);
                    }
                    

                }
                else //之前连接的客户端在向服务器发送信息
                {

                    memset(buf,0,sizeof(buf));
                    if(-1 == (nbytes = recv(new_fds[k].fd,buf,sizeof(buf),0)))
                    {
                        perror("recv error");
                        exit(-1);
                    }
                    else if(0 == nbytes)
                    {
                        printf("客户端[%d]已断开连接\n",new_fds[k].fd);

                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        close(new_fds[k].fd);
                        new_fds[k].fd = -1;
                        continue;
                    }
                    if(!strncmp(buf,"quit",4))
                    {
                        printf("客户端[%d]已退出\n",new_fds[k].fd);
                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        close(new_fds[k].fd);
                        new_fds[k].fd = -1;
                        continue;
                    }
                    printf("客户端[%d]发来信息[%s]\n",new_fds[k].fd,buf);

                    //组装应答消息
                    strcat(buf,"----------k");

                    //给客户端发送应答消息
                    if(-1 == send(new_fds[k].fd,buf,sizeof(buf),0))
                    {
                        perror("send error");
                        exit(-1);
                    }

                }
                ret--; //减少遍历次数
            }
  • 十二、关闭套接字(close函数):
c 复制代码
	close(sockfd);
相关推荐
EricWang1358几秒前
[OS] 项目三-2-proc.c: exit(int status)
服务器·c语言·前端
我是谁??2 分钟前
C/C++使用AddressSanitizer检测内存错误
c语言·c++
Mephisto.java6 分钟前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
南宫生34 分钟前
贪心算法习题其三【力扣】【算法学习day.20】
java·数据结构·学习·算法·leetcode·贪心算法
希言JY44 分钟前
C字符串 | 字符串处理函数 | 使用 | 原理 | 实现
c语言·开发语言
午言若1 小时前
C语言比较两个字符串是否相同
c语言
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub2 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
xiaoxiongip6662 小时前
HTTP 和 HTTPS
网络·爬虫·网络协议·tcp/ip·http·https·ip
使者大牙2 小时前
【大语言模型学习笔记】第一篇:LLM大规模语言模型介绍
笔记·学习·语言模型