自动驾驶概述

参考视频:【全】无人驾驶系列知识入门到提高

本文旨在对视频内容规划控制方面做学习记录,希望帮助有需要的人学习提高。不对处,望指正。

1 自动驾驶等级

L0~L5级,美国工程师协会定义的

L0,简单点理解,就是人来驾驶

L1,巡航定速(adaptive cruise control,ACC),巡航装置可以纵向控制车辆,加速减速;

L2,车道保持辅助(Lane keeping)系统可以纵向控制也可以横向控制汽车,但车是辅助的,人才是主导;

L2.5,可以提供简单路况下的变道能力,如目前的Tesla;

L2和L3之间有一个鸿沟,权责问题(出了事故,谁的责任 );

L3,在L2的基础上提供变道能力,在某一时间段内车是责任主体。如最新款奥迪A8

L4,相当于全无人驾驶,就是大部分时间由车来做主导。如waymo,Baidu;

L5,驾驶能力上,几乎和人类没有关系,l5的车辆没有方向盘以及脚踏板以及其他接管设备。

2 预测、决策、规划、控制

2.1 预测 Prediction

预测需要保证实时性准确性

  1. 基于状态进行预测:Kalman Filter、Particle Filter(这里状态预测可以这么理解,已知当前车子的速度,方向等等信息,通过两种滤波进行简单计算出下一个位置,得到的简单的预测)

  2. 基于车道序列进行预测

  3. 通过机器学习模型化简为分类问题

    --行人预测:无人车需要非常重视安全问题,其中人的安全最为重要,而行人的意图变化却是最难预测的,也是约束最少的。

2.2 决策规划 Planning

规划问题:导航路线规划和精细轨迹表述(全局规划、局部规划)

数学问题转换:将物理世界的地图转化为数学的图表达

--最优路径搜索:由于其他软件模块已经将不确定性进行了最大程度的消除,而最终决策规划模块又是对稳定性要求极高的模块,因此可以通过数学上的最优路径求解出确定解,但是遍历最优解是非常耗时间的

--需要考虑车辆的体感(舒适度)和安全性

评:需要在时效性和有效性做出平衡,因为花很长时间来找最优解,对于行驶中车辆来说,是非常危险的。

体感及时让乘客更舒适,比如经常急刹,容易导致呕吐,肯定没有人愿意坐的。

2.3 控制 Control

--输入信息:目标轨迹(planning_trajectory)、车辆状态(Vehicle State)、输出方向盘(steer)、油门(throttle)

--实现对无人车的控制,我们需要知道踩刹车和减速的关系,踩油门和加速的关系 等等,当无人车拿到一些控制学参数后,通过电脑对无人车进行控制

--控制是对整个驾驶最后的保障,因此,需要在任何情况下对准确性、稳定性和时效性要求都非常高,需要通过对车辆模型精细化描述,并进行严格的数学表达

--传统的控制算法PID可以满足车辆控制的要求,但是要考虑道体感和一些极限情况,控制算法优化也是目前无人车一个持续探讨的问题,如LQR、MPC等


不积硅步,无以至千里。

相关推荐
@小博的博客1 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
南宫生2 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步3 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
love_and_hope3 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
Chef_Chen3 小时前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
芊寻(嵌入式)3 小时前
C转C++学习笔记--基础知识摘录总结
开发语言·c++·笔记·学习
准橙考典4 小时前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
hong1616884 小时前
跨模态对齐与跨领域学习
学习
阿伟来咯~5 小时前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin5 小时前
Hms?: 1渗透测试
学习·安全·网络安全