[USACO11MAR] Brownie Slicing G题解(二分+二维前缀和+矩阵分割)

[USACO11MAR] Brownie Slicing G

题目地址

P3017 [USACO11MAR] Brownie Slicing G

思路

二分最大化最小值

切割思路:

一行一行进行切割,如果这一行可以切割出b块大于等于mid的块,就开始切割下一行

如果无法切割出b块,就把正在切割的行与下一行拼起来一起切割

最后通过能切割出b块的水平块块够不够a条来判断m是否合适

代码

cpp 复制代码
#include <iostream>

using namespace std;

int a[1010][1010], s[1010][1010];
int r, c, x, y;

bool check(int m) {
    int lrow = 0;
    int rows = 0;
    for (int i = 1; i <= r; i ++) {
        int num = 0, sum = 0;
        for (int j = 1; j <= c; j ++) {
            if (sum + (s[i][j]-s[i][j-1])-(s[lrow][j]-s[lrow][j-1]) < m)
                sum += (s[i][j]-s[i][j-1])-(s[lrow][j]-s[lrow][j-1]);
            else {
                sum = 0;
                num ++;
            }
        }
        if (num >= y) {
            lrow = i;
            ++ rows;
        }

    }
    return rows >= x;
}

int main() {

    cin >> r >> c >> x >> y;
    for (int i = 1; i <= r; i ++)
        for (int j = 1; j <= c; j ++) {
            cin >> a[i][j];
            s[i][j] = s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
        }
    int left = 0, right = s[r][c];
    //m 越小越容易成功
    while (left < right) {
        int m = left + right + 1 >> 1;
        if (check(m))
            left = m;
        else
            right = m - 1;
    }
    cout << left;

    return 0;
}
相关推荐
三月微暖寻春笋8 分钟前
【和春笋一起学C++】(五十二)关于函数返回对象时的注意事项
c++·函数·const·返回对象·返回对象的引用
努力学算法的蒟蒻8 分钟前
day53(1.4)——leetcode面试经典150
算法·leetcode·面试
leiming611 分钟前
c++ transform算法
开发语言·c++·算法
菩提祖师_15 分钟前
基于VR的虚拟会议系统设计
开发语言·javascript·c++·爬虫
YxVoyager22 分钟前
Qt C++ :QJson使用详解
c++·qt
橘颂TA23 分钟前
【剑斩OFFER】哈希表简介
数据结构·算法·散列表
小尧嵌入式23 分钟前
c++红黑树及B树B+树
开发语言·数据结构·c++·windows·b树·算法·排序算法
tobias.b29 分钟前
408真题解析-2009-10-数据结构-排序
数据结构·算法·排序算法·408考研·408真题·真题解析
Zachary_zlc33 分钟前
有向无环图检测算法和关键路径算法
算法
你撅嘴真丑34 分钟前
素数回文数的个数 与 求分数序列和
算法