leetcode做题笔记198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。

思路一:动态规划

c语言解法

cpp 复制代码
int rob(int* nums, int numsSize){
    if (numsSize == 1) {
        return nums[0];
    }
    int dp[numsSize];
    dp[0] = nums[0];
    dp[1] = fmax(nums[0],nums[1]);
    for(int i = 2;i<numsSize;i++)
    {
        dp[i] = fmax(dp[i-1],dp[i-2]+nums[i]);
    }
    return dp[numsSize-1];
}

c++解法

cpp 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty()) {
            return 0;
        }
        int size = nums.size();
        if (size == 1) {
            return nums[0];
        }
        vector<int> dp = vector<int>(size, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < size; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[size - 1];
    }
};

分析:

本题算动态规划的一道经典例题,理解前后关系后利用动态规划可解决,状态方程为 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);即后一位所能偷的最大金额为前一位的最大金额和前两位的最大金额加上当前金额,可依据此题求解其他相似类型的题如:打家劫舍Ⅱ等

总结:

本题考察动态规划的应用,利用动态规划将前一天的最大金额作为求解下一天的条件得到答案,除此之外还可用记忆化递归来进行查找

相关推荐
星火开发设计2 小时前
枚举类 enum class:强类型枚举的优势
linux·开发语言·c++·学习·算法·知识
代码游侠7 小时前
ARM开发——阶段问题综述(二)
运维·arm开发·笔记·单片机·嵌入式硬件·学习
嘴贱欠吻!7 小时前
Flutter鸿蒙开发指南(七):轮播图搜索框和导航栏
算法·flutter·图搜索算法
张祥6422889047 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
踩坑记录7 小时前
leetcode hot100 2.两数相加 链表 medium
leetcode·链表
qq_192779878 小时前
C++模块化编程指南
开发语言·c++·算法
cici1587410 小时前
大规模MIMO系统中Alamouti预编码的QPSK复用性能MATLAB仿真
算法·matlab·预编码算法
历程里程碑10 小时前
滑动窗口---- 无重复字符的最长子串
java·数据结构·c++·python·算法·leetcode·django
云边散步11 小时前
godot2D游戏教程系列二(4)
笔记·学习·游戏开发
BORN(^-^)11 小时前
《产品经理方法论》阅读笔记
笔记·产品经理