leetcode做题笔记198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。

思路一:动态规划

c语言解法

cpp 复制代码
int rob(int* nums, int numsSize){
    if (numsSize == 1) {
        return nums[0];
    }
    int dp[numsSize];
    dp[0] = nums[0];
    dp[1] = fmax(nums[0],nums[1]);
    for(int i = 2;i<numsSize;i++)
    {
        dp[i] = fmax(dp[i-1],dp[i-2]+nums[i]);
    }
    return dp[numsSize-1];
}

c++解法

cpp 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty()) {
            return 0;
        }
        int size = nums.size();
        if (size == 1) {
            return nums[0];
        }
        vector<int> dp = vector<int>(size, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < size; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[size - 1];
    }
};

分析:

本题算动态规划的一道经典例题,理解前后关系后利用动态规划可解决,状态方程为 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);即后一位所能偷的最大金额为前一位的最大金额和前两位的最大金额加上当前金额,可依据此题求解其他相似类型的题如:打家劫舍Ⅱ等

总结:

本题考察动态规划的应用,利用动态规划将前一天的最大金额作为求解下一天的条件得到答案,除此之外还可用记忆化递归来进行查找

相关推荐
i嗑盐の小F1 分钟前
【IEEE出版,高录用 | EI快检索】第二届人工智能与自动化控制国际学术会议(AIAC 2024,10月25-27)
图像处理·人工智能·深度学习·算法·自然语言处理·自动化
Python之栈11 分钟前
Python if 语句优化技巧
python·算法
冰红茶兑滴水23 分钟前
Linux 线程控制
linux·c++·算法
CYX_cheng42 分钟前
算法基础-二分查找
算法
Magnetic_h43 分钟前
【iOS】单例模式
笔记·学习·ui·ios·单例模式·objective-c
mikey棒棒棒1 小时前
算法练习题25——合并多项式
java·算法·hashmap·哈希·多项式
重生之我在20年代敲代码1 小时前
HTML讲解(二)head部分
前端·笔记·html·web app
i嗑盐の小F1 小时前
【IEEE&ACM Fellow、CCF组委】第三届人工智能与智能信息处理国际学术会议(AIIIP 2024)
人工智能·深度学习·算法·机器学习·自然语言处理·信号处理
DANGAOGAO1 小时前
蓝桥杯4. Fizz Buzz 经典问题
算法·蓝桥杯
天下无贼!1 小时前
2024年最新版TypeScript学习笔记——泛型、接口、枚举、自定义类型等知识点
前端·javascript·vue.js·笔记·学习·typescript·html