[PyTorch]即插即用的热力图生成

先上张效果图,本来打算移植霹雳老师的使用Pytorch实现Grad-CAM并绘制热力图。但是看了下代码,需要骨干网络按照标准写法(即将特征层封装为features数组),而我写的网络图省事并没有进行封装,改造网络的代价又太大了,所以干脆直接重写一个。

一、生成热力图

大致可以分为三步:①读取图片;②前向传递运算;③用特征向量生成特征图。而图片的resize图简单可以直接用t**ransforms,**后面反正也是直接resize回来的,并不会造成变形。

python 复制代码
# 加载一个transforms用于变形,input_shape为预设的图像尺寸
transform = transforms.Compose([transforms.Resize((input_shape[0],input_shape[1])),
                                    transforms.ToTensor(),
                                    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
image = Image.open(image_path)     #image_path为文件路径
input_tensor = transform(image)    #将图片转换为tensor类型
input_batch = input_tensor.unsqueeze(0)    #为tensor添加batch维度

# 前向传递
model.eval()
with torch.no_grad():
    output = model(input_batch)

使用特征图生成热力图的原理是:将该维度上所有的tensor进行叠加,然后将生成的矩阵变形回输入向量的尺寸

python 复制代码
heatmap = torch.sum(output, dim=1)    #所有通道求和
max_value = torch.max(heatmap)
min_value = torch.min(heatmap)
heatmap = (heatmap-min_value)/(max_value-min_value)*255

heatmap = heatmap.cpu().numpy().astype(np.uint8).transpose(1,2,0)  # 提取热力图

heatmap = cv2.resize(heatmap, input_shape,interpolation=cv2.INTER_LINEAR)  # 还原尺寸

# 将矩阵转换为image类
heatmap=cv2.applyColorMap(heatmap,cv2.COLORMAP_JET)
heatimg = Image.fromarray(heatmap)

二、叠加原图

直接使用plt进行叠加!

python 复制代码
    # 将热力图叠加到原图上
    org_size = image.size
    heatimg = heatimg.resize(org_size)    #将热力图变回输入图像的尺寸
    plt.axis('off')
    plt.imshow(image)
    plt.imshow(heatimg, alpha=0.5)  # alpha为热力图的透明度

    # 显示叠加后的图形
    plt.show()

三、总结

这段代码和霹雳老师的Grad-CAM对比优劣都很明显,优点是代码比较简单。上可以通过插入前向传递的环境直接得到任何层的热力图。但缺点就是不能关注特定的类别,且生成的热力图也不是很美观。

相关推荐
人工智能AI酱2 分钟前
【AI深究】高斯混合模型(GMM)全网最详细全流程详解与案例(附Python代码演示) | 混合模型概率密度函数、多元高斯分布概率密度函数、期望最大化(EM)算法 | 实际案例与流程 | 优、缺点分析
人工智能·python·算法·机器学习·分类·回归·聚类
我是小疯子665 分钟前
HybridA*算法:高效路径规划核心解析
人工智能·算法·机器学习
晨非辰6 分钟前
【数据结构入坑指南(三.1)】--《面试必看:单链表与顺序表之争,读懂“不连续”之美背后的算法思想》
数据结构·c++·人工智能·深度学习·算法·机器学习·面试
草莓熊Lotso9 分钟前
《算法闯关指南:优选算法--滑动窗口》--15.串联所有单词的子串,16.最小覆盖子串
开发语言·c++·人工智能·算法
阿里-于怀17 分钟前
Dify 官方上架 Higress 插件,轻松接入 AI 网关访问模型服务
网络·人工智能·ai·dify·higress
AI周红伟18 分钟前
周红伟:智能体构建,《企业智能体构建-DIFY+COZE+Skills+RAG和Agent能体构建案例实操》
大数据·人工智能
Faker66363aaa22 分钟前
Faster-RCNN改进一基于R50-FPG的人脸与垃圾物体检测识别_crop640-50e_COCO
python
kaizq26 分钟前
Windows下基于Python构造Dify可视应用环境[非Dock]
windows·python·dify·大语言模型llm·人工智能ai·智能体agent
!chen27 分钟前
引入AI辅助的3D游戏美术工作流
人工智能·3d·游戏美术
码农三叔31 分钟前
(2-1)常用传感器与基础原理:视觉传感器+激光雷达
人工智能·机器人·人机交互·人形机器人