基于食肉植物优化的BP神经网络(分类应用) - 附代码

基于食肉植物优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用食肉植物算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.食肉植物优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 食肉植物算法应用

食肉植物算法原理请参考:https://blog.csdn.net/u011835903/article/details/125921790

食肉植物算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从食肉植物算法的收敛曲线可以看到,整体误差是不断下降的,说明食肉植物算法起到了优化的作用:

5.Matlab代码

相关推荐
大数据在线22 分钟前
进击的开放固件,突破AI时代多元算力管理难题
人工智能·浪潮信息·openbmc·ai算力·开放固件
Jeo_dmy44 分钟前
ChatGPT入门之文本情绪识别:先了解LSTM如何处理文字序列
人工智能·chatgpt·lstm
JINGWHALE11 小时前
设计模式 行为型 状态模式(State Pattern)与 常见技术框架应用 解析
前端·人工智能·后端·设计模式·性能优化·系统架构·状态模式
飞飞是甜咖啡2 小时前
【Orca】Orca - Graphlet 和 Orbit 计数算法
c语言·c++·人工智能·python
mqiqe2 小时前
Spring AI ChatClient
人工智能·spring·microsoft
Schwertlilien2 小时前
模式识别-Ch3-贝叶斯估计
人工智能·机器学习·概率论
长风清留扬2 小时前
小程序在智慧城市构建中的角色与功能研究
javascript·css·人工智能·微信小程序·小程序·html·智慧城市
salsm2 小时前
使用 C++ 实现神经网络:从基础到高级优化
开发语言·c++·神经网络
xiaocang6688882 小时前
深度学习:原理、应用与前沿进展
人工智能·深度学习·机器学习
ClonBrowser2 小时前
Facebook 隐私变革之路:回顾与展望
人工智能·数据安全·facebook·隐私保护