金融机器学习方法:K-均值算法

目录

1.算法介绍

2.算法原理

3.python实现示例


1.算法介绍

K均值聚类算法是机器学习和数据分析中常用的无监督学习方法之一,主要用于数据的分类。它的目标是将数据划分为几个独特的、互不重叠的子集或"集群",以使得同一集群内的数据点彼此相似,而不同集群的数据点则尽可能不同。

2.算法原理

  1. 选择K个初始质心,这些质心可以是随机选取的数据点或其他方法得到的。
  2. 根据每个数据点到质心的距离,将其分配给最近的质心,形成K个集群。
  3. 重新计算每个集群的质心。
  4. 重复上述步骤,直到质心不再发生变化或达到一定的迭代次数

3.python实现示例

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 随机生成数据
np.random.seed(0)
points = np.vstack([
    np.random.normal(0, 0.5, size=(100, 2)),
    np.random.normal(1, 0.25, size=(100, 2)),
    np.random.normal(2, 0.6, size=(100, 2))
])

# 使用KMeans进行聚类
kmeans = KMeans(n_clusters=3)
kmeans.fit(points)
labels = kmeans.predict(points)
centroids = kmeans.cluster_centers_

# 可视化结果
plt.scatter(points[:, 0], points[:, 1], c=labels)
plt.scatter(centroids[:, 0], centroids[:, 1], color='red', marker='X')
plt.show()

结果图:


相关推荐
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
WangYaolove13141 小时前
Python基于大数据的电影市场预测分析(源码+文档)
python·django·毕业设计·源码
知乎的哥廷根数学学派1 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
cnxy1882 小时前
Python爬虫进阶:反爬虫策略与Selenium自动化完整指南
爬虫·python·selenium
用户8356290780513 小时前
Python 实现 Excel 条件格式自动化
后端·python
深蓝电商API4 小时前
Scrapy管道Pipeline深度解析:多方式数据持久化
爬虫·python·scrapy
噎住佩奇4 小时前
(Win11系统)搭建Python爬虫环境
爬虫·python
我命由我123454 小时前
Photoshop - Photoshop 工具栏(57)模糊工具
学习·ui·职场和发展·求职招聘·职场发展·学习方法·photoshop
basketball6164 小时前
python 的对象序列化
开发语言·python
rgeshfgreh5 小时前
Python流程控制:从条件到循环实战
前端·数据库·python