用matlab求解线性规划

文章目录

1、用单纯形表求解线性规划

求解线性规划 m i n − 3 x 1 − 4 x 2 + x 3 min -3x_1-4x_2+x_3 min−3x1−4x2+x3,
约束条件为
2 x 1 + 3 x 2 ≤ 12 2x_1+3x_2≤12 2x1+3x2≤12
5 x 1 + x 2 + x 3 = 19 5x_1+x_2+x_3=19 5x1+x2+x3=19,
x 1 , x 2 , x 3 ≥ 0 x_1,x_2,x_3≥0 x1,x2,x3≥0.

绘制单纯形表求解:

2、用matlab求解线性规划------linprog()函数

matlab 复制代码
clc,clear,close all;
% 定义目标函数的系数向量
f = [-3; -4; 1];

% 定义不等式约束的系数矩阵和右侧常数向量
A = [2, 3, 0];
b = [12];

% 定义等式约束的系数矩阵和右侧常数向量
Aeq = [5, 1, 1];
beq = [19];

% 定义变量的边界
lb = zeros(3, 1); % 所有变量的下界都是0

% 使用linprog求解线性规划问题
[x, fval, exitflag, output, lambda]  = linprog(f, A, b, Aeq, beq, lb);

% 输出结果
fprintf('最小值为: %.4f\n', fval);
fprintf('x1 = %.4f, x2 = %.4f, x3 = %.4f\n', x(1), x(2), x(3));

fprintf('\n')
disp('输出结果(以分数形式显示):')
fprintf('最小值为: %s\n', rats(fval));
fprintf('x1 =%s, x2 =%s, x3 =%s\n', rats(x(1)), rats(x(2)), rats(x(3)));

% 输出影子价格向量(以分数形式显示)
fprintf('影子价格向量为:\n');
disp(rats(lambda.ineqlin));

返回结果:

matlab 复制代码
Optimal solution found.

最小值为: -17.1538
x1 = 3.4615, x2 = 1.6923, x3 = 0.0000

输出结果(以分数形式显示):
最小值为:    -223/13    
x1 =     45/13    , x2 =     22/13    , x3 =       0      
影子价格向量为:
     17/13    

问题:

此处发现两个问题,主要体现在影子价格向量上:

1、影子价格少一个元素

2、影子价格向量元素和用代数公式法求解的结果差一个负号

通过查阅Mathworks官方文档,可以看到缺少负号并不是程序编写错误问题:

补充代码:显示出完整的影子价格向量

问题1的解决方法:需要将约束条件中的不等式全部写为等式。

因为将一个不等式和一个等式的约束条件传递给linprog函数时,它会计算一个相对较小的影子价格向量,其中包含了不等式约束的影响,而等式约束的影响通常不单独表示在影子价格向量中。

matlab 复制代码
%% 约束条件全部为等式
disp('求解完整的影子价格向量:')
% 定义目标函数的系数向量
f = [-3; -4; 1];

% 定义不等式约束的系数矩阵和右侧常数向量
A = [2, 3, 0; 5, 1, 1];
b = [12; 19];

% 定义变量的边界
lb = zeros(3, 1); % 所有变量的下界都是0

% 使用linprog求解线性规划问题
[x, fval, exitflag, output, lambda] = linprog(f, A, b, [], [], lb);

% 输出结果
fprintf('最小值为: %.4f\n', fval);
fprintf('x1 = %.4f, x2 = %.4f, x3 = %.4f\n', x(1), x(2), x(3));

% 输出影子价格向量
fprintf('影子价格向量为:\n');
disp(lambda.ineqlin);

fprintf('\n')
disp('输出结果(以分数形式显示):')
fprintf('最小值为: %s\n', rats(fval));
fprintf('x1 =%s, x2 =%s, x3 =%s\n', rats(x(1)), rats(x(2)), rats(x(3)));

% 输出影子价格向量(以分数形式显示)
fprintf('影子价格向量为:\n');
disp(rats(lambda.ineqlin));
fprintf('\n')

返回结果:

matlab 复制代码
求解完整的影子价格向量:

Optimal solution found.

最小值为: -17.1538
x1 = 3.4615, x2 = 1.6923, x3 = 0.0000
影子价格向量为:
    1.3077
    0.0769

输出结果(以分数形式显示):
最小值为:    -223/13    
x1 =     45/13    , x2 =     22/13    , x3 =       0      
影子价格向量为:
     17/13    
      1/13    
相关推荐
崇山峻岭之间几秒前
Matlab学习记录06
前端·学习·matlab
IT猿手2 分钟前
基于粒子群算法与动态窗口混合的无人机三维动态避障路径规划研究,MATLAB代码
算法·matlab·无人机·多目标优化算法·多目标算法
leo__52019 分钟前
MATLAB 实现 基分类器为决策树的 AdaBoost
开发语言·决策树·matlab
wuk9982 小时前
基于MATLAB的MFCC特征提取与SVM训练实现
开发语言·支持向量机·matlab
Matlab仿真实验室2 小时前
基于Matlab实现歌曲人声消除仿真
开发语言·matlab
fie888912 小时前
MATLAB中基于CNN实现图像超分辨率重建
matlab·cnn·超分辨率重建
崇山峻岭之间13 小时前
Matlab学习笔记02
笔记·学习·matlab
jghhh0119 小时前
基于PCA的轴承故障诊断MATLAB程序实现
matlab
feifeigo12320 小时前
基于帧间差分法的运动目标检测 MATLAB 实现
目标检测·matlab·目标跟踪
aini_lovee20 小时前
基于Jousselme距离改进D-S证据理论matlab实现
开发语言·算法·matlab