用matlab求解线性规划

文章目录

1、用单纯形表求解线性规划

求解线性规划 m i n − 3 x 1 − 4 x 2 + x 3 min -3x_1-4x_2+x_3 min−3x1−4x2+x3,
约束条件为
2 x 1 + 3 x 2 ≤ 12 2x_1+3x_2≤12 2x1+3x2≤12
5 x 1 + x 2 + x 3 = 19 5x_1+x_2+x_3=19 5x1+x2+x3=19,
x 1 , x 2 , x 3 ≥ 0 x_1,x_2,x_3≥0 x1,x2,x3≥0.

绘制单纯形表求解:

2、用matlab求解线性规划------linprog()函数

matlab 复制代码
clc,clear,close all;
% 定义目标函数的系数向量
f = [-3; -4; 1];

% 定义不等式约束的系数矩阵和右侧常数向量
A = [2, 3, 0];
b = [12];

% 定义等式约束的系数矩阵和右侧常数向量
Aeq = [5, 1, 1];
beq = [19];

% 定义变量的边界
lb = zeros(3, 1); % 所有变量的下界都是0

% 使用linprog求解线性规划问题
[x, fval, exitflag, output, lambda]  = linprog(f, A, b, Aeq, beq, lb);

% 输出结果
fprintf('最小值为: %.4f\n', fval);
fprintf('x1 = %.4f, x2 = %.4f, x3 = %.4f\n', x(1), x(2), x(3));

fprintf('\n')
disp('输出结果(以分数形式显示):')
fprintf('最小值为: %s\n', rats(fval));
fprintf('x1 =%s, x2 =%s, x3 =%s\n', rats(x(1)), rats(x(2)), rats(x(3)));

% 输出影子价格向量(以分数形式显示)
fprintf('影子价格向量为:\n');
disp(rats(lambda.ineqlin));

返回结果:

matlab 复制代码
Optimal solution found.

最小值为: -17.1538
x1 = 3.4615, x2 = 1.6923, x3 = 0.0000

输出结果(以分数形式显示):
最小值为:    -223/13    
x1 =     45/13    , x2 =     22/13    , x3 =       0      
影子价格向量为:
     17/13    

问题:

此处发现两个问题,主要体现在影子价格向量上:

1、影子价格少一个元素

2、影子价格向量元素和用代数公式法求解的结果差一个负号

通过查阅Mathworks官方文档,可以看到缺少负号并不是程序编写错误问题:

补充代码:显示出完整的影子价格向量

问题1的解决方法:需要将约束条件中的不等式全部写为等式。

因为将一个不等式和一个等式的约束条件传递给linprog函数时,它会计算一个相对较小的影子价格向量,其中包含了不等式约束的影响,而等式约束的影响通常不单独表示在影子价格向量中。

matlab 复制代码
%% 约束条件全部为等式
disp('求解完整的影子价格向量:')
% 定义目标函数的系数向量
f = [-3; -4; 1];

% 定义不等式约束的系数矩阵和右侧常数向量
A = [2, 3, 0; 5, 1, 1];
b = [12; 19];

% 定义变量的边界
lb = zeros(3, 1); % 所有变量的下界都是0

% 使用linprog求解线性规划问题
[x, fval, exitflag, output, lambda] = linprog(f, A, b, [], [], lb);

% 输出结果
fprintf('最小值为: %.4f\n', fval);
fprintf('x1 = %.4f, x2 = %.4f, x3 = %.4f\n', x(1), x(2), x(3));

% 输出影子价格向量
fprintf('影子价格向量为:\n');
disp(lambda.ineqlin);

fprintf('\n')
disp('输出结果(以分数形式显示):')
fprintf('最小值为: %s\n', rats(fval));
fprintf('x1 =%s, x2 =%s, x3 =%s\n', rats(x(1)), rats(x(2)), rats(x(3)));

% 输出影子价格向量(以分数形式显示)
fprintf('影子价格向量为:\n');
disp(rats(lambda.ineqlin));
fprintf('\n')

返回结果:

matlab 复制代码
求解完整的影子价格向量:

Optimal solution found.

最小值为: -17.1538
x1 = 3.4615, x2 = 1.6923, x3 = 0.0000
影子价格向量为:
    1.3077
    0.0769

输出结果(以分数形式显示):
最小值为:    -223/13    
x1 =     45/13    , x2 =     22/13    , x3 =       0      
影子价格向量为:
     17/13    
      1/13    
相关推荐
软件算法开发15 小时前
基于LSTM深度学习的网络流量测量算法matlab仿真
深度学习·matlab·lstm·网络流量测量
wheeldown1 天前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
小白的高手之路2 天前
Matlab中的积分——函数int()和quadl()
matlab
机器学习之心2 天前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
WangYan20222 天前
MATLAB 2023a深度学习工具箱全面解析:从CNN、RNN、GAN到YOLO与U-Net,涵盖模型解释、迁移学习、时间序列预测与图像生成的完整实战指南
深度学习·matlab·matlab 2023a
迎风打盹儿2 天前
均匀圆形阵抗干扰MATLAB仿真实录与特点解读
matlab·信号处理·抗干扰·均匀圆阵·波束合成
数维学长9863 天前
【全网最全】《2025国赛/高教杯》C题 思路+代码python和matlab+文献 一到四问 退火算法+遗传算法 NIPT的时点选择与胎儿的异常判定
开发语言·算法·matlab
dlraba8023 天前
用遗传算法破解一元函数最大值问题:从原理到 MATLAB 实现
开发语言·matlab
996终结者3 天前
Python数据分析与处理(二):将数据写回.mat文件的不同方法【超详细】
python·matlab·数据分析
我是水怪的哥3 天前
在时间序列中增加一个阶跃对长期趋势变化的影响
matlab·lake