机器学习tip:sklearn中的pipeline

文章目录

  • [1 加载数据集](#1 加载数据集)
  • [2 构思算法的流程](#2 构思算法的流程)
  • [3 Pipeline执行流程的分析](#3 Pipeline执行流程的分析)
  • Reference
  • Statement

一个典型的机器学习构建包含若干个过程

  1. 源数据ETL
  2. 数据预处理
  3. 特征选取
  4. 模型训练与验证

一个典型的机器学习构建包含若干个过程

以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果。因此,对以上多个步骤、进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效、易用。

管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。

管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。注意:管道机制更像是编程技巧的创新,而非算法的创新。

接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:

1 加载数据集

python 复制代码
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder
 
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                 'breast-cancer-wisconsin/wdbc.data', header=None)
                                 # Breast Cancer Wisconsin dataset
 
X, y = df.values[:, 2:], df.values[:, 1]
                                # y为字符型标签
                                # 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
                    >>> encoder.transform(['M', 'B'])
                    array([1, 0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)

2 构思算法的流程

可放在Pipeline中的步骤可能有:

  • 特征标准化是需要的,可作为第一个环节
  • 既然是分类器,classifier也是少不了的,自然是最后一个环节
  • 中间可加上比如数据降维(PCA)
python 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
 
from sklearn.pipeline import Pipeline
 
pipe_lr = Pipeline([('sc', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                    ('clf', LogisticRegression(random_state=1))
                    ])
pipe_lr.fit(X_train, y_train)
print('Test accuracy: %.3f' % pipe_lr.score(X_test, y_test))
 
                # Test accuracy: 0.947

Pipeline对象接受二元tuple构成的list,每一个二元 tuple 中的第一个元素为 arbitrary identifier string,我们用以获取(access)Pipeline object 中的 individual elements,二元 tuple 中的第二个元素是 scikit-learn与之相适配的transformer 或者 estimator。

python 复制代码
Pipeline([('sc', StandardScaler()), ('pca', PCA(n_components=2)), ('clf', LogisticRegression(random_state=1))])

3 Pipeline执行流程的分析

Pipeline 的中间过程由scikit-learn相适配的转换器(transformer)构成,最后一步是一个estimator。比如上述的代码,StandardScaler和PCA transformer 构成intermediate steps,LogisticRegression 作为最终的estimator

当我们执行 pipe_lr.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fit 和 transform 方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行 fit 和 transform 方法,最终将转换后的数据传递给 LosigsticRegression。整个流程如下图所示:

Reference

https://blog.csdn.net/lanchunhui/article/details/50521648

Statement

本文未经系统测试和专业评审,欢迎在评论区反馈和讨论问题。

相关推荐
骚戴几秒前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维2 分钟前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者20 分钟前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai26 分钟前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃38 分钟前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb1 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU1 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习
Blossom.1182 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
zxsz_com_cn2 小时前
设备预测性维护典型案例:中讯烛龙赋能高端制造降本增效
人工智能
人工智能培训3 小时前
图神经网络初探(1)
人工智能·深度学习·知识图谱·群体智能·智能体