【CGSSA-BP预测】基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及数据](#🌈4 Matlab代码及数据)


💥1 概述

基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究是一种利用混合混沌算法、高斯变异算法和麻雀算法来优化BP神经网络的预测方法。在该研究中,通过将这三种算法相互结合,可以充分利用它们的优势,提高BP神经网络的训练效果和预测性能。

首先,混合混沌算法是一种基于混沌序列的全局优化算法,通过引入混沌序列来增加搜索空间的多样性,以避免陷入局部最优解。混合混沌算法可以有效地搜索全局最优解,从而提高BP神经网络的预测准确性。

其次,高斯变异算法是一种基于高斯分布的局部优化算法,通过引入高斯变异操作来增加搜索空间的局部探索能力。高斯变异算法可以在搜索过程中对权重和偏置进行微小的变异,以进一步优化BP神经网络的性能。

最后,麻雀算法是一种基于麻雀行为的启发式优化算法,通过模拟麻雀的觅食行为来搜索最优解。麻雀算法具有较强的探索能力和快速收敛性,能够有效地优化BP神经网络的权重和偏置。

在该研究中,首先使用BP神经网络建立预测模型,然后利用混合混沌算法、高斯变异算法和麻雀算法来优化BP神经网络的权重和偏置。具体实施时,可以先使用混合混沌算法进行全局搜索,然后再使用高斯变异算法进行局部搜索,最后使用麻雀算法进行最优解的调整。

通过混合混沌-高斯变异-麻雀算法的优化,可以有效地提高BP神经网络的预测性能。这种方法充分利用了混沌序列的全局搜索能力、高斯分布的局部搜索能力和麻雀行为的探索能力,从而得到更准确、稳定的预测模型。

基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究是一种有效的方法,可以用于解决回归预测问题,并在实际应用中具有广泛的应用前景。通过结合这三种算法的优势,可以得到更准确、稳定的预测结果。

📚 2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

1\]陈宝奇周再祥张强.基于混沌麻雀搜索算法优化BP神经网络的短期风电功率预测\[J\].工业仪表与自动化装置, 2022(6):13-17. \[2\]许亮,张紫叶,陈曦,等.基于改进麻雀搜索算法优化BP神经网络的气动光学成像偏移预测\[J\].光电子·激光, 2021(006):032. \[3\]杨书恒.基于麻雀搜索算法优化BP神经网络的光伏系统最大功率点追踪的研究\[J\]. 2023.DOI:10.15913/j.cnki.kjycx.2022.16.019. ### [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码及数据****

相关推荐
椰羊~王小美1 小时前
LeetCode -- Flora -- edit 2025-04-27
算法·leetcode·职场和发展
缘友一世2 小时前
从线性回归到逻辑回归
算法·逻辑回归·线性回归
前端_学习之路3 小时前
javaScript--数据结构和算法
javascript·数据结构·算法
weixin_428498493 小时前
使用HYPRE库并行装配IJ稀疏矩阵指南: 矩阵预分配和重复利用
算法·矩阵
雾削木5 小时前
mAh 与 Wh:电量单位的深度解析
开发语言·c++·单片机·嵌入式硬件·算法·电脑
__lost5 小时前
小球在摆线上下落的物理过程MATLAB代码
开发语言·算法·matlab
mit6.8247 小时前
[Lc_week] 447 | 155 | Q1 | hash | pair {}调用
算法·leetcode·哈希算法·散列表
jerry6098 小时前
优先队列、堆笔记(算法第四版)
java·笔记·算法
勤劳的牛马8 小时前
📚 小白学算法 | 每日一题 | 算法实战:加1!
算法
Epiphany.5568 小时前
基于c++的LCA倍增法实现
c++·算法·深度优先