【CGSSA-BP预测】基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及数据](#🌈4 Matlab代码及数据)


💥1 概述

基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究是一种利用混合混沌算法、高斯变异算法和麻雀算法来优化BP神经网络的预测方法。在该研究中,通过将这三种算法相互结合,可以充分利用它们的优势,提高BP神经网络的训练效果和预测性能。

首先,混合混沌算法是一种基于混沌序列的全局优化算法,通过引入混沌序列来增加搜索空间的多样性,以避免陷入局部最优解。混合混沌算法可以有效地搜索全局最优解,从而提高BP神经网络的预测准确性。

其次,高斯变异算法是一种基于高斯分布的局部优化算法,通过引入高斯变异操作来增加搜索空间的局部探索能力。高斯变异算法可以在搜索过程中对权重和偏置进行微小的变异,以进一步优化BP神经网络的性能。

最后,麻雀算法是一种基于麻雀行为的启发式优化算法,通过模拟麻雀的觅食行为来搜索最优解。麻雀算法具有较强的探索能力和快速收敛性,能够有效地优化BP神经网络的权重和偏置。

在该研究中,首先使用BP神经网络建立预测模型,然后利用混合混沌算法、高斯变异算法和麻雀算法来优化BP神经网络的权重和偏置。具体实施时,可以先使用混合混沌算法进行全局搜索,然后再使用高斯变异算法进行局部搜索,最后使用麻雀算法进行最优解的调整。

通过混合混沌-高斯变异-麻雀算法的优化,可以有效地提高BP神经网络的预测性能。这种方法充分利用了混沌序列的全局搜索能力、高斯分布的局部搜索能力和麻雀行为的探索能力,从而得到更准确、稳定的预测模型。

基于混合混沌-高斯变异-麻雀算法优化BP神经网络回归预测研究是一种有效的方法,可以用于解决回归预测问题,并在实际应用中具有广泛的应用前景。通过结合这三种算法的优势,可以得到更准确、稳定的预测结果。

📚 2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈宝奇周再祥张强.基于混沌麻雀搜索算法优化BP神经网络的短期风电功率预测[J].工业仪表与自动化装置, 2022(6):13-17.

[2]许亮,张紫叶,陈曦,等.基于改进麻雀搜索算法优化BP神经网络的气动光学成像偏移预测[J].光电子·激光, 2021(006):032.

[3]杨书恒.基于麻雀搜索算法优化BP神经网络的光伏系统最大功率点追踪的研究[J]. 2023.DOI:10.15913/j.cnki.kjycx.2022.16.019.

🌈4 Matlab代码及数据

相关推荐
lucy153027510792 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
杜杜的man18 分钟前
【go从零单排】迭代器(Iterators)
开发语言·算法·golang
小沈熬夜秃头中୧⍤⃝34 分钟前
【贪心算法】No.1---贪心算法(1)
算法·贪心算法
木向1 小时前
leetcode92:反转链表||
数据结构·c++·算法·leetcode·链表
阿阿越1 小时前
算法每日练 -- 双指针篇(持续更新中)
数据结构·c++·算法
skaiuijing1 小时前
Sparrow系列拓展篇:对调度层进行抽象并引入IPC机制信号量
c语言·算法·操作系统·调度算法·操作系统内核
Star Patrick2 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康3 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
weixin_518285053 小时前
深度学习笔记11-神经网络
笔记·深度学习·神经网络
pianmian18 小时前
python数据结构基础(7)
数据结构·算法