大数据学习(17)-mapreduce task详解

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


MapReduce Local Task和提交到YARN上运行的MapReduce任务有以下区别:

  1. 执行环境:Local Task是在本地执行,而YARN任务是在Hadoop集群中执行。
  2. 资源管理:Local Task没有专门的资源管理系统,而YARN有专门的资源管理系统,可以进行全局资源分配和任务调度。
  3. 运行机制:Local Task的运行机制是MapReduce框架,而YARN任务运行在YARN上,通过YARN框架进行管理。
  4. 扩展性:Local Task只能运行在本地,而YARN任务可以运行在Hadoop集群中,具有更好的扩展性。

MapReduce Local Task通常运行在本地,处理小规模数据。这种任务适合于那些数据规模较小,不需要使用分布式计算环境,或者只需要在本地进行快速测试和验证的任务。

例如,开发人员可以在本地测试和调试MapReduce程序,或者快速处理一些小规模的数据进行分析或处理。由于Local Task是在本地运行的,因此它不需要等待Hadoop集群的资源分配和任务调度,可以更快地执行任务。

需要注意的是,虽然Local Task可以处理小规模数据,但如果数据量过大,或者需要处理的数据集超过了本地硬件资源的限制,那么Local Task可能会遇到性能瓶颈或者内存不足等问题。因此,在实际应用中,需要根据数据规模和硬件资源来选择合适的执行环境。

总之:Local Task适用于小规模数据处理,而YARN任务适用于大规模数据处理,具有更好的资源管理和扩展性。

相关推荐
Drawing stars3 小时前
JAVA后端 前端 大模型应用 学习路线
java·前端·学习
崇山峻岭之间3 小时前
Matlab学习记录33
开发语言·学习·matlab
zgl_200537793 小时前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
科技林总4 小时前
【系统分析师】3.5 多处理机系统
学习
潘达斯奈基~4 小时前
万字详解Flink基础知识
大数据·flink
芯思路5 小时前
STM32开发学习笔记之三【按键】
笔记·stm32·学习
charlie1145141916 小时前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy
咚咚王者6 小时前
人工智能之核心基础 机器学习 第十二章 半监督学习
人工智能·学习·机器学习
袁气满满~_~6 小时前
Python数据分析学习
开发语言·笔记·python·学习
zandy10117 小时前
从 Workflow 到 Agent 模式!衡石多智能体协同架构,重新定义智能 BI 底层逻辑
大数据·信息可视化·架构