雪数据同化系统Snow Data Assimilation System数据集

雪数据同化系统(SNODAS)

雪资料同化系统(SNODAS)是国家水文遥感业务中心(NOHRSC)精心开发的综合建模和资料同化系统。其主要目标是提供高度准确的积雪和相关参数估计,作为水文建模和分析的重要资源。SNODAS 通过吸收各种来源的数据来实现这一目标,包括卫星观测、地面测量和数值天气预报模型。这些不同的数据流在雪质量和能量平衡模型中经过彻底处理,最终产生雪水当量(SWE)、雪深、雪覆盖范围和雪反照率的估计值。

SNODAS数据集拥有1公里的空间分辨率和24小时的时间分辨率,确保准确、及时的洞察。该数据集每天更新,涵盖美国大陆、阿拉斯加和夏威夷,为各种应用程序的用户提供全面的覆盖。SNODAS 数据面向广泛的受众,包括水资源管理者、应急响应人员和气候科学家。这些宝贵的数据在各种应用中发挥着关键作用,包括估计融雪径流、预测雪崩、监测干旱和洪水管理的积雪状况,以及研究气候变化对雪动态的影响。SNODAS 数据可通过国家冰雪数据中心 (NSIDC) 免费访问,进一步增强了广大用户群的可访问性和实用性。前言 -- 人工智能教程

该数据集描述提供了 SNODAS 的全面概述,强调了其在支持跨领域水文研究和决策方面的重要性。您可以在此处找到更多信息,还可以在此处找到气候引擎组织中数据集的链接

数据集详细信息
空间范围 美国本土
空间分辨率 1000 m(1/120 度)
时间分辨率 日常的
时间跨度 2003年10月1日至今
更新频率 每日更新,滞后 1 天

变量

多变的 单位 比例因子
雪水当量 1.0
雪深 1.0
引文
复制代码
`Barrett, Andrew. 2003. National Operational Hydrologic Remote Sensing Center Snow Data Assimilation System (SNODAS) Products at NSIDC. NSIDC Special
Report 11. Boulder, CO USA: National Snow and Ice Data Center. 19 pp.

Barrett, A. P., R. L. Armstrong, and J. L. Smith. 2001. The Snow Data Assimilation System (SNODAS): An overview.
Journal of Hydrometeorology 2(3):288-306.
`

地球引擎片段

javascript 复制代码
// Read in Image Collection and get image
var snodas_ic = ee.ImageCollection('projects/earthengine-legacy/assets/projects/climate-engine/snodas/daily')
var snodas_i = snodas_ic.filterDate('2022-01-01', '2022-01-05').first()

// Print first image to see bands
print(snodas_i)

// Visualize select bands from first image
var prec_palette = ["#ffffcc", "#c7e9b4", "#7fcdbb", "#41b6c4", "#1d91c0", "#225ea8", "#0c2c84"]
Map.addLayer(snodas_i.select('Snow_Depth'), {min: 0, max: 1, palette: prec_palette}, 'Snow_Depth')
Map.addLayer(snodas_i.select('SWE'), {min: 0, max: 1, palette: prec_palette}, 'SWE')

示例代码:https://code.earthengine.google.com/? scriptPath=users/sat-io/awesome-gee-catalog-examples:weather-climate/SNODAS-DAILY

执照

NOAA 数据、信息和产品,无论采用何种交付方式,均不受版权保护,并且公众后续使用不受限制。一旦获得,它们就可以用于任何合法用途。上述数据属于公共领域,提供时不受使用和分发限制。欲了解更多信息,请访问 NWS 免责声明网站。

关键词:雪、气候、近实时、CONUS、美国、NOAA、每日

创建和提供:NOAA、NSIDC

策展人:气候引擎组织

相关推荐
IDRSolutions_CN3 分钟前
如何将 PDF 中的文本提取为 JSON 格式
java·经验分享·pdf·软件工程·团队开发
摘星编程24 分钟前
并发设计模式实战系列(6):读写锁
java·设计模式·并发编程
吴_知遇30 分钟前
【华为OD机试真题】428、连续字母长度 | 机试真题+思路参考+代码解析(E卷)(C++)
开发语言·c++·华为od
zwjapple30 分钟前
React中createPortal 的详细用法
前端·javascript·react.js
小矮马32 分钟前
React-组件通信
前端·javascript·react.js
Java中文社群1 小时前
最火向量数据库Milvus安装使用一条龙!
java·人工智能·后端
Apache Flink1 小时前
京东物流基于Flink & StarRocks的湖仓建设实践
java·大数据·flink
basketball6161 小时前
Python torchvision.transforms 下常用图像处理方法
开发语言·图像处理·python
JAVA百练成神1 小时前
深度理解spring——BeanFactory的实现
java·后端·spring
兔子蟹子1 小时前
Java集合框架解析
java·windows·python