LeNet(pytorch实现

LeNet

本文编写了一个简单易懂的LeNet网络,并在F-MNIST数据集上进行测试,允许使用GPU计算

python 复制代码
在这里插入代码片
import torch
from torch import nn, optim 
import d2lzh_pytorch as d2l

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# f-mnist 数据集是28*28的
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5),  # 输出通道,输出通道,核大小
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),  # 高宽减半
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            d2l.FlattenLayer(),
            nn.Linear(16*4*4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature)
        return output
net = LeNet()

# 数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 评估测试集,支持GPU
def evaluate_acc(data_iter, net, device = None):
    if device is None and isinstance(net, nn.Module):
        device = list(net.parameters())[0].device  # 看参数的gpu还是cpu
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X,y in data_iter:
            if isinstance(net, nn.Module):  # 这个可加可不加
                net.eval()  # 评估模式
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()  # 转回训练模式
                n += y.shape[0]
                
    return acc_sum / n

def train(net, train_iter, test_iter, optimizer, device, epochs):
    net = net.to(device)
    loss = nn.CrossEntropyLoss()
    for epoch in range(epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
        test_acc = evaluate_acc(test_iter, net)
        print('epoch %d, loss %.4f, train_acc %.4f, test_acc %.4f'%(epoch + 1, train_l_sum, train_acc_sum/n, test_acc))

lr, epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train(net, train_iter, test_iter, optimizer, device, epochs)
相关推荐
橙子小哥的代码世界6 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
黄公子学安全16 分钟前
Java的基础概念(一)
java·开发语言·python
新加坡内哥谈技术43 分钟前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
程序员一诺1 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.1 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
fanstuck1 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409661 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
Jiude2 小时前
算法题题解记录——双变量问题的 “枚举右,维护左”
python·算法·面试
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb