LeNet(pytorch实现

LeNet

本文编写了一个简单易懂的LeNet网络,并在F-MNIST数据集上进行测试,允许使用GPU计算

python 复制代码
在这里插入代码片
import torch
from torch import nn, optim 
import d2lzh_pytorch as d2l

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# f-mnist 数据集是28*28的
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5),  # 输出通道,输出通道,核大小
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),  # 高宽减半
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )

        self.fc = nn.Sequential(
            d2l.FlattenLayer(),
            nn.Linear(16*4*4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature)
        return output
net = LeNet()

# 数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 评估测试集,支持GPU
def evaluate_acc(data_iter, net, device = None):
    if device is None and isinstance(net, nn.Module):
        device = list(net.parameters())[0].device  # 看参数的gpu还是cpu
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X,y in data_iter:
            if isinstance(net, nn.Module):  # 这个可加可不加
                net.eval()  # 评估模式
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train()  # 转回训练模式
                n += y.shape[0]
                
    return acc_sum / n

def train(net, train_iter, test_iter, optimizer, device, epochs):
    net = net.to(device)
    loss = nn.CrossEntropyLoss()
    for epoch in range(epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X,y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
        test_acc = evaluate_acc(test_iter, net)
        print('epoch %d, loss %.4f, train_acc %.4f, test_acc %.4f'%(epoch + 1, train_l_sum, train_acc_sum/n, test_acc))

lr, epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train(net, train_iter, test_iter, optimizer, device, epochs)
相关推荐
生信大表哥31 分钟前
单细胞测序分析(五)降维聚类&数据整合
linux·python·聚类·数信院生信服务器
新知图书1 小时前
FastGPT简介
人工智能·ai agent·智能体·大模型应用开发·大模型应用
seeyoutlb1 小时前
微服务全局日志处理
java·python·微服务
Dev7z2 小时前
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
人工智能·神经网络·cnn
ada7_2 小时前
LeetCode(python)——148.排序链表
python·算法·leetcode·链表
元拓数智2 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌2 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
沃达德软件2 小时前
大数据反诈平台功能解析
大数据·人工智能
OAoffice2 小时前
智能学习培训考试平台如何驱动未来组织:重塑人才发展格局
人工智能·学习·企业智能学习考试平台·学练考一体化平台