OPENCHAT: ADVANCING OPEN-SOURCE LANGUAGE MODELS WITH MIXED-QUALITY DATA

本文是LLM系列文章,针对《OPENCHAT: ADVANCING OPEN-SOURCE LANGUAGE MODELS WITH MIXED-QUALITY DATA》的翻译。

OPENCHAT:利用混合质量数据推进开源语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 前言](#2 前言)
  • [3 OpenChat](#3 OpenChat)
  • [4 实验](#4 实验)
  • [5 分析](#5 分析)
  • [6 相关工作](#6 相关工作)
  • [7 结论与未来工作](#7 结论与未来工作)

摘要

如今,像LLaMA这样的开源大型语言模型已经出现。最近的发展结合了监督微调(SFT)和强化学习微调(RLFT),以使这些模型与人类目标保持一致。然而,SFT方法平等地对待具有混合质量的所有训练数据,而RLFT方法需要高质量的成对或基于排名的偏好数据。在这项研究中,我们提出了一个新的框架,名为OpenChat,用于推进具有混合质量数据的开源语言模型。具体来说,我们考虑一般的SFT训练数据,由少量专家数据和大量次优数据组成,没有任何偏好标签。我们提出了C(条件)-RLFT,它将不同的数据源视为粗粒度的奖励标签,并学习类条件策略来利用互补的数据质量信息。有趣的是,C-RLFT中的最优策略可以通过单阶段、无RL的监督学习轻松求解,这是轻量级的,避免了昂贵的人类偏好标记。通过在三个标准基准上进行广泛的实验,我们使用C-RLFT微调的openchat-13b在所有13b开源语言模型中实现了最高的平均性能。此外,我们使用AGIEval来验证模型的泛化性能,其中只有openchat-13b超过了基本模型。最后,我们进行了一系列分析,以阐明OpenChat的有效性和稳健性。我们的代码、数据和模型在https://github.com/imoneoi/openchat上可用.

1 引言

2 前言

3 OpenChat

4 实验

5 分析

6 相关工作

7 结论与未来工作

在本文中,我们介绍了OpenChat,这是一个以条件RLFT方法为特色的创新框架,专门用于改进具有混合质量数据的开源语言模型。我们的模型openchat-13b在所有13b开源语言模型中,在广泛的基准测试中提供了最高的平均性能,展示了显著的优势,如简单、无RL训练和最低的奖励质量要求。尽管取得了这些令人鼓舞的结果,但我们承认有进一步改进的潜在研究领域。首先,我们根据数据源对不同质量的假设可能过于简单,分配的粗粒度奖励可以进行更精细的调整,以反映每个数据点的实际质量。其次,虽然我们的模型主要侧重于增强指令跟随能力,但探索OpenChat在提高LLM推理能力方面的应用为未来的工作提供了一条很有前途的途径。

相关推荐
老金带你玩AI11 分钟前
老金开源Agent Teams编排Skill:一句话自动组队,手动挡时代结束了
人工智能
TYFHVB1212 分钟前
2026工业级CRM系统选型攻略:6款主流产品深度评测与场景适配剖析
大数据·人工智能
独自归家的兔14 分钟前
阿里 Qwen-Image-2.0 深度评测:中文 AI 绘画的新标杆
人工智能
AI智能观察16 分钟前
星海智能体重磅发布:TIMUS.AI 打造 AI 时代企业对客智能体平台
人工智能·数字人·智慧展厅·智能体·数字展厅·智慧营销
相思半17 分钟前
告别聊天机器人!2026 智能体元年:Claude 4.6 vs GPT-5.3 vs OpenClaw 全方位对比
人工智能·gpt·深度学习·claude·codex·智能体·seedance
玉梅小洋26 分钟前
2026年2月大模型性能对比分析报告
人工智能·ai·大模型·ai编程·ai工具
芝士爱知识a29 分钟前
[2026深度测评] AI期权交易平台推荐榜单:AlphaGBM领跑,量化交易的新范式
开发语言·数据结构·人工智能·python·alphagbm·ai期权工具
芝士爱知识a32 分钟前
【FinTech前沿】AlphaGBM:重塑期权交易的智能分析引擎——从原理到实践
数据结构·数据库·人工智能·alphagbm·期权
AC赳赳老秦32 分钟前
2026主权AI趋势:DeepSeek搭建企业自有可控AI环境,保障数据安全实战
大数据·数据库·人工智能·python·科技·rabbitmq·deepseek
人工智能培训33 分钟前
大模型架构演进:从Transformer到MoE
人工智能·深度学习·大模型·transformer·知识图谱·具身智能·人工智能 培训