OpenCV中world模块介绍

OpenCV中有很多模块,模块间保持最小的依赖关系,用户可以根据自己的实际需要链接相关的库,而不需链接所有的库,这样在最终交付应用程序时可以减少总库的大小。但如果需要依赖OpenCV的库太多,有时会带来不方便,此时可以使用OpenCV的world模块。

OpenCV中的world模块,也称为超级模块(super-module),它结合了用户选择的所有其它模块。它是一个一体化(all-in-one)模块,具有所有库的功能。使用world模块可能会使应用程序的编译时间略有增加。

目前OpenCV最新发布版本为4.8.1,编译不带world模块的动态库,在windows下会有58个动态库。在windows上使用vs2022及在linux上使用g++ 9的脚本build.sh如下所示:

bash 复制代码
#! /bin/bash

if [ $# != 2 ]; then
    echo "Error: requires two parameters: 1: windows or linux; 2: relese or debug"
    echo "For example: $0 windows debug"
    exit -1
fi

if [ $1 != "windows" ] && [ $1 != "linux" ]; then
    echo "Error: the first parameter can only be windows or linux"
    exit -1
fi

if [ $2 != "release"  ] && [ $2 != "debug" ]; then
    echo "Error: the second parameter can only be release or debug"
    exit -1
fi

if [[ ! -d "build" ]]; then
    mkdir build
    cd build
else
    cd build
fi

if [ $1 == "windows" ] && [ $2 == "release" ]; then
    cmake \
        -G"Visual Studio 17 2022" -A x64 \
        -DCMAKE_BUILD_TYPE=Release \
        -DCMAKE_CONFIGURATION_TYPES=Release \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    cmake --build . --target install --config release
fi

if [ $1 == "windows" ] && [ $2 == "debug" ]; then
    cmake \
        -G"Visual Studio 17 2022" -A x64 \
        -DCMAKE_BUILD_TYPE=Debug \
        -DCMAKE_CONFIGURATION_TYPES=Debug \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    cmake --build . --target install --config debug
fi

if [ $1 == "linux" ] && [ $2 == "release" ]; then
    cmake \
        -DCMAKE_C_COMPILER=/usr/bin/gcc-9 \
        -DCMAKE_CXX_COMPILER=/usr/bin/g++-9 \
        -DCMAKE_BUILD_TYPE=Release \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/release/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    make -j4
    make install
fi

if [ $1 == "linux" ] && [ $2 == "debug" ]; then
    cmake \
        -DCMAKE_C_COMPILER=/usr/bin/gcc-9 \
        -DCMAKE_CXX_COMPILER=/usr/bin/g++-9 \
        -DCMAKE_BUILD_TYPE=Debug \
        -DCMAKE_CONFIGURATION_TYPES=Debug \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/debug/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    make -j4
    make install
fi

rc=$?
if [[ ${rc} != 0 ]]; then
    echo "Error: please check: ${rc}"
	exit ${rc}
fi

在windows上编译结果如下所示:

在Linux上编译结果如下所示:

GitHubhttps://github.com/fengbingchun/OpenCV_Test

相关推荐
测试人社区-小明1 天前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
雍凉明月夜1 天前
视觉opencv学习笔记Ⅴ-数据增强(1)
人工智能·python·opencv·计算机视觉
啊阿狸不会拉杆1 天前
《数字图像处理 》 第 1 章-绪论
图像处理·python·opencv·算法·数字图像处理
测试人社区-小明1 天前
未来测试岗位的AI需求分析
人工智能·opencv·测试工具·算法·金融·机器人·需求分析
测试人社区-千羽1 天前
语义分析驱动的测试用例生成:提升软件测试效率的新范式
运维·人工智能·opencv·面试·职场和发展·自动化·测试用例
劈星斩月1 天前
OpenCV 学习8-使用卷积进行图像滤波
opencv·卷积核·图像滤波
明月醉窗台1 天前
Opencv 之 几个常见的对比度调整方法
人工智能·opencv·计算机视觉
测试人社区-千羽1 天前
提升软件质量与效率:设计评审的自动化分析与实践路径
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
Darkershadow1 天前
Python学习之使用笔记本摄像头截屏
python·opencv·学习
却道天凉_好个秋2 天前
OpenCV(四十一):SIFT关键点检测
人工智能·opencv·计算机视觉