OpenCV中world模块介绍

OpenCV中有很多模块,模块间保持最小的依赖关系,用户可以根据自己的实际需要链接相关的库,而不需链接所有的库,这样在最终交付应用程序时可以减少总库的大小。但如果需要依赖OpenCV的库太多,有时会带来不方便,此时可以使用OpenCV的world模块。

OpenCV中的world模块,也称为超级模块(super-module),它结合了用户选择的所有其它模块。它是一个一体化(all-in-one)模块,具有所有库的功能。使用world模块可能会使应用程序的编译时间略有增加。

目前OpenCV最新发布版本为4.8.1,编译不带world模块的动态库,在windows下会有58个动态库。在windows上使用vs2022及在linux上使用g++ 9的脚本build.sh如下所示:

bash 复制代码
#! /bin/bash

if [ $# != 2 ]; then
    echo "Error: requires two parameters: 1: windows or linux; 2: relese or debug"
    echo "For example: $0 windows debug"
    exit -1
fi

if [ $1 != "windows" ] && [ $1 != "linux" ]; then
    echo "Error: the first parameter can only be windows or linux"
    exit -1
fi

if [ $2 != "release"  ] && [ $2 != "debug" ]; then
    echo "Error: the second parameter can only be release or debug"
    exit -1
fi

if [[ ! -d "build" ]]; then
    mkdir build
    cd build
else
    cd build
fi

if [ $1 == "windows" ] && [ $2 == "release" ]; then
    cmake \
        -G"Visual Studio 17 2022" -A x64 \
        -DCMAKE_BUILD_TYPE=Release \
        -DCMAKE_CONFIGURATION_TYPES=Release \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    cmake --build . --target install --config release
fi

if [ $1 == "windows" ] && [ $2 == "debug" ]; then
    cmake \
        -G"Visual Studio 17 2022" -A x64 \
        -DCMAKE_BUILD_TYPE=Debug \
        -DCMAKE_CONFIGURATION_TYPES=Debug \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    cmake --build . --target install --config debug
fi

if [ $1 == "linux" ] && [ $2 == "release" ]; then
    cmake \
        -DCMAKE_C_COMPILER=/usr/bin/gcc-9 \
        -DCMAKE_CXX_COMPILER=/usr/bin/g++-9 \
        -DCMAKE_BUILD_TYPE=Release \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/release/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    make -j4
    make install
fi

if [ $1 == "linux" ] && [ $2 == "debug" ]; then
    cmake \
        -DCMAKE_C_COMPILER=/usr/bin/gcc-9 \
        -DCMAKE_CXX_COMPILER=/usr/bin/g++-9 \
        -DCMAKE_BUILD_TYPE=Debug \
        -DCMAKE_CONFIGURATION_TYPES=Debug \
        -DBUILD_SHARED_LIBS=ON \
        -DBUILD_opencv_world=ON \
        -DBUILD_PERF_TESTS=OFF \
        -DBUILD_TESTS=OFF \
        -DCMAKE_INSTALL_PREFIX=../install_4.8.1/debug/ \
        -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
        ..
    make -j4
    make install
fi

rc=$?
if [[ ${rc} != 0 ]]; then
    echo "Error: please check: ${rc}"
	exit ${rc}
fi

在windows上编译结果如下所示:

在Linux上编译结果如下所示:

GitHubhttps://github.com/fengbingchun/OpenCV_Test

相关推荐
阿蒙Amon12 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频
慕婉030714 小时前
OpenCV图像边缘检测
人工智能·opencv·计算机视觉
jndingxin16 小时前
OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
人工智能·opencv·dnn
Edward-tan18 小时前
基于 opencv+yolov8+easyocr的车牌追踪识别
python·opencv·ocr·yolov8
jndingxin1 天前
OpenCV CUDA模块设备层-----反向二值化阈值处理函数thresh_binary_inv_func()
人工智能·opencv·计算机视觉
jndingxin1 天前
OpenCV CUDA模块设备层-----在 GPU 上执行类似于 std::copy 的操作函数warpCopy()
人工智能·opencv·计算机视觉
晓13131 天前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
jndingxin1 天前
OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()
人工智能·opencv·计算机视觉
luofeiju2 天前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
Echo``11 天前
12.OpenCV—基础入门
开发语言·c++·人工智能·qt·opencv·计算机视觉