【大模型的一些基本结论】

这里写自定义目录标题

各个论文中给出一些观察显现,我们比摘要更简略地摘要一些文本大模型大佬地基本结论和观察到的现象

LLama的一些基本结论

由于大模型要作为服务,因而推理时间更重要。一个较小的、训练时间较长的模型最终会在推理中更便宜

主要流程

预归一化[GPT3]:为了提高训练的稳定性,我们对每个transformer子层的输入进行归一化,而不是对输出进行归一化。我们使用Zhang和Sennrich(2019)介绍的RMSNorm归一化函数。

SwiGLU激活函数[PaLM]:我们用SwiGLU激活函数取代ReLU非线性,由Shazeer(2020)介绍,以提高性能。我们使用2/3 4d的维度,而不是PaLM中的4d。

旋转嵌入[GPTNeo]:我们删除了绝对位置嵌入,取而代之的是在网络的每一层添加Su等人(2021)介绍的旋转位置嵌入(RoPE)。我们不同模型的超参数细节见表2。

附录:

某些名词解释

N-Gram是一种基于统计语言模型的算法。它的基本思想是将文本里面的内容按照字节进行大小为N的滑动窗口操作,形成了长度是N的字节片段序列。

归一化函数RMSNorm

激活函数SwiGLU

位置嵌入RoPE

优化器AdamW

评测基准
MMLU Benchmark (Multi-task Language Understanding)多任务知识理解能力,涵盖数学、计算机、人文科学。 GPT4载-shot上 86%
BIG-bench 有204个任务,语言学,常识推理、数学、生物、物理等。

65% 的任务中超过人类。
HELM Holistic Evaluation of Language Models 综合测评,16个核心场景,7类指标

相关推荐
阿正的梦工坊17 分钟前
Megatron中--train-iters和--max_epochs两个参数介绍
人工智能·深度学习·自然语言处理
哥布林学者40 分钟前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(四)语音识别和触发字检测
深度学习·ai
青瓷程序设计2 小时前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
香芋Yu2 小时前
【深度学习教程——01_深度基石(Foundation)】05_数据太多怎么吃?Mini-batch训练的设计模式
深度学习·设计模式·batch
学步_技术3 小时前
多模态学习—A Survey of Multimodal Learning: Methods, Applications, and Future
人工智能·深度学习·计算机视觉
2501_933329553 小时前
Infoseek数字公关AI中台:基于深度学习的全链路智能舆情处置系统架构解析与实战应用
人工智能·深度学习·系统架构
AndrewHZ4 小时前
【AI黑话日日新】什么是大模型的test-time scaling?
人工智能·深度学习·大模型·llm·推理加速·测试时缩放
学步_技术4 小时前
多模态学习—Multimodal image synthesis and editing: A survey and taxonomy
人工智能·深度学习·计算机视觉
工程师老罗4 小时前
Pytorch模型GPU训练
人工智能·pytorch·深度学习