电影评分数据分析案例-Spark SQL

python 复制代码
# cording:utf8

from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType, StringType, StructType
import pyspark.sql.functions as F

if __name__ == '__main__':
    # 0.构建执行环境入口对象SparkSession
    spark = SparkSession.builder.\
        appName('movie_demo').\
        master('local[*]').\
        getOrCreate()

    sc = spark.sparkContext

    # 1.读取文件
    schema = StructType().add('user_id', StringType(), nullable=True). \
        add('movie_id', IntegerType(), nullable=True).\
        add('rank', IntegerType(), nullable=True).\
        add('ts', StringType(), nullable=True)

    df = spark.read.format('csv').\
        option('sep', '\t').\
        option('header', False).\
        option('encoding', 'utf-8').\
        schema(schema=schema).\
        load('../input/u.data')

    # TODO 1:用户平均分
    df.groupBy('user_id').\
        avg('rank').\
        withColumnRenamed('avg(rank)', 'avg_rank').\
        withColumn('avg_rank', F.round('avg_rank', 2)).\
        orderBy('avg_rank', ascending=False).\
        show()

    # TODO 2:电影的平均分查询
    df.createTempView('movie')
    spark.sql('''
        SELECT movie_id, ROUND(AVG(rank),2) as avg_rank FROM movie GROUP BY movie_id ORDER BY avg_rank DESC
    ''').show()

    # TODO 3:查询大于平均分的电影数量
    print('大于平均分电影数量为:', df.where(df['rank'] > df.select(F.avg('rank')).first()['avg(rank)']).count())

    # TODO 4:查询高分电影中(>3)打分次数最多的用户,此人打分的平均分
    # 找出打分次数最多的人
    user_id = df.where('rank>3').\
        groupBy('user_id').\
        count(). \
        withColumnRenamed('count', 'cnt').\
        orderBy('cnt', ascennding=False).\
        limit(1).\
        first()['user_id']
    # 算平均分
    df.filter(df['user_id'] == user_id).\
        select(F.round(F.avg('rank'), 2)).show()

    # TODO 5: 查询每个用户的平均分打分,最低打分,最高打分
    df.groupBy('user_id').\
        agg(
        F.round(F.avg('rank'), 2).alias('avg_rank'),
        F.min('rank').alias('min_rank'),
        F.max('rank').alias('max_rank')
    ).show()

    # TODO 6:查询评分超过100次的电影的平均分 排名TOP10
    df.groupBy('movie_id').\
        agg(
        F.round(F.count('movie_id'),2).alias('cnt'),
        F.round(F.avg('rank'),2).alias('avg_rank')
        ).\
        where('cnt > 100').\
        orderBy('avg_rank', ascending=False).\
        limit(10).\
        show()

'''
1.agg:它是GroupedData对象的API,作用是:在里面可以写多个聚合
2.alias:它是Column对象的API,可以针对一个列进行改名
3.withColumnRenamed:它是DataFrame的API,可以对DF中的列进行改名,一次改一个列,改多个列可以链式调用
4.orderBy:DataFrame的API,进行排序,参数1是被排序的列,参数2是 升序(True)或降序(False)
5.first:DataFrame的API,取出DF的第一行数据,返回值结果是Row对象
## Row对象:就是一个数组,可以通过row['列名']来取出当前行中,某一列具体数值,返回值不再是DF 或者GroupedData 或者Column 而是具体的值(字符串、数字等)
'''

1.

相关推荐
老吴学AI35 分钟前
第 2 节 | 从“呈现数据“到“驱动决策“:数据故事的力量
数据分析·数据可视化·excel教程·数据故事·职场技巧·业务洞察·报告编写
知识分享小能手1 小时前
Oracle 19c入门学习教程,从入门到精通,Oracle优化SQL语句 — 语法知识点与使用方法详解(16)
sql·学习·oracle
TimberWill2 小时前
常用sql【pgsql】——建表相关
数据库·sql
EveryPossible3 小时前
大数据分析练习2
数据挖掘·数据分析
麦聪聊数据3 小时前
LiveOps事故零容忍:游戏行业数据库的细粒度权限管控与审计实践
运维·数据库·后端·sql
Aloudata3 小时前
数据工程新范式:NoETL 统一语义层破解跨境电商 ROI 统筹与数据孤岛难题
数据分析·etl·指标平台·数据编织
Aloudata3 小时前
数据工程决策:自研 vs 采购 NoETL 自动化指标平台的深度分析
数据分析·数据治理·etl·指标平台
我真的是大笨蛋3 小时前
MVCC解析
java·数据库·spring boot·sql·mysql·设计模式·设计规范
EveryPossible3 小时前
大数据分析练习1
数据挖掘·数据分析
不剪发的Tony老师3 小时前
DataCap:一款开源数据中台软件
sql·数据集成·数据中台