电影评分数据分析案例-Spark SQL

python 复制代码
# cording:utf8

from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType, StringType, StructType
import pyspark.sql.functions as F

if __name__ == '__main__':
    # 0.构建执行环境入口对象SparkSession
    spark = SparkSession.builder.\
        appName('movie_demo').\
        master('local[*]').\
        getOrCreate()

    sc = spark.sparkContext

    # 1.读取文件
    schema = StructType().add('user_id', StringType(), nullable=True). \
        add('movie_id', IntegerType(), nullable=True).\
        add('rank', IntegerType(), nullable=True).\
        add('ts', StringType(), nullable=True)

    df = spark.read.format('csv').\
        option('sep', '\t').\
        option('header', False).\
        option('encoding', 'utf-8').\
        schema(schema=schema).\
        load('../input/u.data')

    # TODO 1:用户平均分
    df.groupBy('user_id').\
        avg('rank').\
        withColumnRenamed('avg(rank)', 'avg_rank').\
        withColumn('avg_rank', F.round('avg_rank', 2)).\
        orderBy('avg_rank', ascending=False).\
        show()

    # TODO 2:电影的平均分查询
    df.createTempView('movie')
    spark.sql('''
        SELECT movie_id, ROUND(AVG(rank),2) as avg_rank FROM movie GROUP BY movie_id ORDER BY avg_rank DESC
    ''').show()

    # TODO 3:查询大于平均分的电影数量
    print('大于平均分电影数量为:', df.where(df['rank'] > df.select(F.avg('rank')).first()['avg(rank)']).count())

    # TODO 4:查询高分电影中(>3)打分次数最多的用户,此人打分的平均分
    # 找出打分次数最多的人
    user_id = df.where('rank>3').\
        groupBy('user_id').\
        count(). \
        withColumnRenamed('count', 'cnt').\
        orderBy('cnt', ascennding=False).\
        limit(1).\
        first()['user_id']
    # 算平均分
    df.filter(df['user_id'] == user_id).\
        select(F.round(F.avg('rank'), 2)).show()

    # TODO 5: 查询每个用户的平均分打分,最低打分,最高打分
    df.groupBy('user_id').\
        agg(
        F.round(F.avg('rank'), 2).alias('avg_rank'),
        F.min('rank').alias('min_rank'),
        F.max('rank').alias('max_rank')
    ).show()

    # TODO 6:查询评分超过100次的电影的平均分 排名TOP10
    df.groupBy('movie_id').\
        agg(
        F.round(F.count('movie_id'),2).alias('cnt'),
        F.round(F.avg('rank'),2).alias('avg_rank')
        ).\
        where('cnt > 100').\
        orderBy('avg_rank', ascending=False).\
        limit(10).\
        show()

'''
1.agg:它是GroupedData对象的API,作用是:在里面可以写多个聚合
2.alias:它是Column对象的API,可以针对一个列进行改名
3.withColumnRenamed:它是DataFrame的API,可以对DF中的列进行改名,一次改一个列,改多个列可以链式调用
4.orderBy:DataFrame的API,进行排序,参数1是被排序的列,参数2是 升序(True)或降序(False)
5.first:DataFrame的API,取出DF的第一行数据,返回值结果是Row对象
## Row对象:就是一个数组,可以通过row['列名']来取出当前行中,某一列具体数值,返回值不再是DF 或者GroupedData 或者Column 而是具体的值(字符串、数字等)
'''

1.

相关推荐
温柔小胖5 小时前
sql注入之python脚本进行时间盲注和布尔盲注
数据库·sql·网络安全
lucky_syq5 小时前
Spark算子:大数据处理的魔法棒
大数据·分布式·spark
£漫步 云端彡6 小时前
技术分享:MyBatis SQL 日志解析脚本
java·sql·mybatis 日志解析
2301_793069827 小时前
Java和SQL测试、性能监控中常用工具
java·sql·selenium
D愿你归来仍是少年8 小时前
解决Python升级导致PySpark任务异常方案
大数据·开发语言·python·spark
weixin_307779139 小时前
PySpark检查两个DataFrame的数据是否一致
大数据·spark·pandas
Guheyunyi9 小时前
接入DeepSeek后,智慧园区安全调度系统的全面提升
人工智能·python·安全·信息可视化·数据分析·智慧城市
摇滚侠10 小时前
NCHAR_CS和CHAR_CS,导致UNION ALL 时,提示SQL 错误 [12704] [72000]: ORA-12704: 字符集不匹配
数据库·sql·oracle
君败红颜12 小时前
MySQL 使用 Performance Schema 定位和解决慢 SQL 问题
数据库·sql·mysql
东尔科技12 小时前
PET-SQL:基于大模型的两阶段Text2SQL方法
服务器·数据库·sql