torch张量的降维与升维

文章目录


一、降维和升维

squeeze和unsqueeze是torch张量常用的降维与升维的一种方式,但这种方式只能增添或减少大小为1的维度,如下:

python 复制代码
x1 = torch.randn(1, 8, 256, 256)
x1 = torch.squeeze(x1,dim=0)
print(x1.shape) # torch.Size([8, 256, 256])

x2 = torch.randn(8, 1, 256, 256)
x2 = torch.squeeze(x2,dim=1)
print(x2.shape) # torch.Size([8, 256, 256])

x1 = torch.randn(8, 256, 256)
x1 = torch.unsqueeze(x1,dim=0)
print(x1.shape)  # torch.Size([1, 8, 256, 256])

x2 = torch.randn(8, 256, 256)
x2 = torch.unsqueeze(x2,dim=1)
print(x2.shape)  # torch.Size([8, 1, 256, 256])

但如果维度大小不为1,squeeze就无效了。
降维:可以使用torch.mean()函数来对维度X进行求平均值,相当于将维度X的所有通道合并为一个单一的通道。
升维:可以使用expand()函数对需要的尺寸进行扩展(其他维度传递-1作为参数,表示在那个维度不进行扩展)

python 复制代码
x1 = torch.randn(2, 8, 256, 256)
x1 = torch.mean(x1, dim=0)
print(x1.shape) # torch.Size([8, 256, 256])

x2 = torch.randn(8, 3, 256, 256)
x2 = torch.mean(x2, dim=1)
print(x2.shape) # torch.Size([8, 256, 256])

x3 = torch.randn(8, 256, 256)
x3 = x3.unsqueeze(0).expand(4,-1,-1,-1)
print(x3.shape)  # torch.Size([4, 8, 256, 256])

x4 = torch.randn(16, 256, 256)
x4 = x4.unsqueeze(1).expand(-1, 8, -1, -1)
print(x4.shape) # torch.Size([16, 8, 256, 256])

未完待续...

相关推荐
酷爱码34 分钟前
如何通过python连接hive,并对里面的表进行增删改查操作
开发语言·hive·python
蹦蹦跳跳真可爱58938 分钟前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
MinggeQingchun4 小时前
Python - 爬虫-网页解析数据-库lxml(支持XPath)
爬虫·python·xpath·lxml
lixy5795 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
Python自动化办公社区5 小时前
Python 3.14:探索新版本的魅力与革新
开发语言·python
weixin_贾6 小时前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲6 小时前
函数的定义与使用(python)
开发语言·python
船长@Quant6 小时前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建
多巴胺与内啡肽.7 小时前
深度学习--自然语言处理统计语言与神经语言模型
深度学习·语言模型·自然语言处理
偶尔微微一笑7 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器