torch张量的降维与升维

文章目录


一、降维和升维

squeeze和unsqueeze是torch张量常用的降维与升维的一种方式,但这种方式只能增添或减少大小为1的维度,如下:

python 复制代码
x1 = torch.randn(1, 8, 256, 256)
x1 = torch.squeeze(x1,dim=0)
print(x1.shape) # torch.Size([8, 256, 256])

x2 = torch.randn(8, 1, 256, 256)
x2 = torch.squeeze(x2,dim=1)
print(x2.shape) # torch.Size([8, 256, 256])

x1 = torch.randn(8, 256, 256)
x1 = torch.unsqueeze(x1,dim=0)
print(x1.shape)  # torch.Size([1, 8, 256, 256])

x2 = torch.randn(8, 256, 256)
x2 = torch.unsqueeze(x2,dim=1)
print(x2.shape)  # torch.Size([8, 1, 256, 256])

但如果维度大小不为1,squeeze就无效了。
降维:可以使用torch.mean()函数来对维度X进行求平均值,相当于将维度X的所有通道合并为一个单一的通道。
升维:可以使用expand()函数对需要的尺寸进行扩展(其他维度传递-1作为参数,表示在那个维度不进行扩展)

python 复制代码
x1 = torch.randn(2, 8, 256, 256)
x1 = torch.mean(x1, dim=0)
print(x1.shape) # torch.Size([8, 256, 256])

x2 = torch.randn(8, 3, 256, 256)
x2 = torch.mean(x2, dim=1)
print(x2.shape) # torch.Size([8, 256, 256])

x3 = torch.randn(8, 256, 256)
x3 = x3.unsqueeze(0).expand(4,-1,-1,-1)
print(x3.shape)  # torch.Size([4, 8, 256, 256])

x4 = torch.randn(16, 256, 256)
x4 = x4.unsqueeze(1).expand(-1, 8, -1, -1)
print(x4.shape) # torch.Size([16, 8, 256, 256])

未完待续...

相关推荐
Tipriest_10 分钟前
Python关键字梳理
python·关键字·keyword
im_AMBER1 小时前
学习日志05 python
python·学习
大虫小呓2 小时前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
哪 吒2 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~3 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进3 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木3 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
凛铄linshuo4 小时前
爬虫简单实操2——以贴吧为例爬取“某吧”前10页的网页代码
爬虫·python·学习