KNN(K近邻)水仙花的分类(含答案)

题目

以下采用K-NN算法来解决水仙花的分类问题,每个样本有两个特征,第一个为水仙花的花萼长度,第二个为水仙花 的花萼宽度,具体数据见表,

1)设置k=3, 采用欧式距离,分析分类精度为多少?

2)使用网格搜索方式找到最佳参数,并预测

3)可视化

我的数据集合就是这个

excel数据展示

代码

复制代码
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

def model_selection(x_train, y_train):
    params = {'n_neighbors': [3,5,7,8,10], 'p': [1,2]}
    model = KNeighborsClassifier()
    gs = GridSearchCV(model, params, verbose=2, cv=5)
    gs.fit(x_train, y_train)
    print("Best Model:", gs.best_params_, "Accuracy:", gs.best_score_)
    return gs.best_estimator_

def read():
    filename = r"data/shuixianhua.xlsx"
    data = pd.read_excel(filename, header=None)
    x1 = data.iloc[1:, [0, 1]].values
    x2 = data.iloc[1:, [3, 4]].values
    # print(x2)
    y1 = data.iloc[1:, 2].values
    y2 = data.iloc[1:, 5].values
    x = np.vstack((x1, x2))  # 竖向合并
    y = np.hstack((y1, y2))  # 横向合并

    y = y.astype(int)
    return x, y

def plot_decision_boundary(x, y, model):
    h = 0.02  # Step size in the mesh

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
    cmap_bold = ListedColormap(['#FF0000', '#00FF00'])

    x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("KNN Decision Boundaries")
    plt.show()

if __name__ == '__main__':
    x, y = read()
    best_model = model_selection(x, y)
    plot_decision_boundary(x, y, best_model)
相关推荐
IT_Octopus9 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能14 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客20 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条27 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po28 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条29 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞33 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君1 小时前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
biter00881 小时前
ubuntu(28):ubuntu系统多版本conda和多版本cuda共存
linux·人工智能·ubuntu·conda