KNN(K近邻)水仙花的分类(含答案)

题目

以下采用K-NN算法来解决水仙花的分类问题,每个样本有两个特征,第一个为水仙花的花萼长度,第二个为水仙花 的花萼宽度,具体数据见表,

1)设置k=3, 采用欧式距离,分析分类精度为多少?

2)使用网格搜索方式找到最佳参数,并预测

3)可视化

我的数据集合就是这个

excel数据展示

代码

复制代码
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

def model_selection(x_train, y_train):
    params = {'n_neighbors': [3,5,7,8,10], 'p': [1,2]}
    model = KNeighborsClassifier()
    gs = GridSearchCV(model, params, verbose=2, cv=5)
    gs.fit(x_train, y_train)
    print("Best Model:", gs.best_params_, "Accuracy:", gs.best_score_)
    return gs.best_estimator_

def read():
    filename = r"data/shuixianhua.xlsx"
    data = pd.read_excel(filename, header=None)
    x1 = data.iloc[1:, [0, 1]].values
    x2 = data.iloc[1:, [3, 4]].values
    # print(x2)
    y1 = data.iloc[1:, 2].values
    y2 = data.iloc[1:, 5].values
    x = np.vstack((x1, x2))  # 竖向合并
    y = np.hstack((y1, y2))  # 横向合并

    y = y.astype(int)
    return x, y

def plot_decision_boundary(x, y, model):
    h = 0.02  # Step size in the mesh

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
    cmap_bold = ListedColormap(['#FF0000', '#00FF00'])

    x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
    y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("KNN Decision Boundaries")
    plt.show()

if __name__ == '__main__':
    x, y = read()
    best_model = model_selection(x, y)
    plot_decision_boundary(x, y, best_model)
相关推荐
救救孩子把2 分钟前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx9910137 分钟前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事1 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@1 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
qingyunliushuiyu1 小时前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
程思扬1 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1211 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者1 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能1 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉