分享一下办公自动化常用的思想

目录

网页获取数据需求①

大体思路:Python+selenium+Xpath

我们在利用Python做办公自动化,从网页中获取数据时,其实理应想到的时爬虫技术,但是有时候很多网页数据都是加密的,尤其是我们公司的数据,所以当你想利用爬虫进行数据获取时,这是一个很好的想法,但是无奈数据加密,这时候我们就会另辟蹊径,直接从加载出来的网页中,通过Xpath直接定位元素获取数据,大体逻辑如下:

①利用以下代码,开启一个指定端口号的谷歌浏览器进程(Python3.8以上):

python 复制代码
chrome_options = Options()
chrome_options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
chrome_driver = './chromedriver.exe'
service = Service(chrome_driver)
driver = webdriver.Chrome(service=service, options=chrome_options)

利用以下代码,开启一个指定端口号的谷歌浏览器进程(Python3.8以下):

注意:C:\Program Files (x86)\Google\Chrome\Application,这一行这指的是自己电脑谷歌浏览器可执行程序的位置,请按照不同的电脑进行灵活变动

python 复制代码
 cd C:\Program Files (x86)\Google\Chrome\Application & chrome.exe --remote-debugging-port=9222 --user-data-dir="D:\selenum\AutomationProfile"

②接下来就是利用Xpath定位指定元素进行如:点击、文本获取等操作

参考案例:点我进入案例


网页获取数据需求②

大体思路:requests爬虫

如果数据没有加密参数,我们直接可以利用爬虫进行获取数据,模板我也给你写好了,你只需要更改一下自己网址以及携带的参数即可

python 复制代码
import json
import time
import requests

url = '网址'
params = {
  "参数键": '值',
  "参数键": '值',
  "参数键": '值',
}
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36',
}

res_data = requests.get(url=url,params=params,headers=headers)
res_data.encoding= "utf-8"
data  = res_data.text
'''
对获取的数据进行进一步分析
'''

参考案例1:点我进入案例1

参考案例2:点我进入案例2

参考案例3:点我进入案例3


批量生成需求

①文件的移动、重命名

我常用的时os模块

参考案例1(多文件夹内文件移动):点我进入案例1

参考案例2(单个夹内文件移动):点我进入案例2

参考案例3(批量修改图片后缀):点我进入案例3

②word、Excel批量生成

我常用的模块时 python-docx,openpyxl,以下时非常典型的两个例子:

参考案例1(将Word文件中的内容写入Excel文件):点我进入案例1

参考案例2(将Excel文件内容写入Word文件):点我进入案例2


匹配需求

匹配需求的逻辑其实就两条,这两条可以涵盖Excel表之间:一对多、多对一、多对多的匹配需求,我们假设不论是一对多、多对一、多对多,我们统称 A 数据 匹配 B数据

① 将B数据制作成json文件

②加载json数据为字典,读取数据A数据进行匹配

典型案例1(多表之间互匹):点我进入案例2

案例中的第二段代码,可改为以下代码,这样就无需将json合并,因为读取的就是合并的

python 复制代码
import csv
import os
from collections import defaultdict
def write_json():
    list_a = []  # 列表用来存放 (A列,B列) 的元组,所有的数据
    d = defaultdict(list)  # 创建字典
    for f in os.listdir("./csv版/"):
        with open("./csv版/" + f, newline='', encoding='utf-8') as csvfile:
            # 读取 CSV 文件内容
            reader = csv.reader(csvfile, delimiter=',', quotechar='"')
            # 遍历 CSV 文件中的每一行数据
            print(f, "加载完毕")
            for d in reader:
                # 处理每一行数据
                # print(d)
                list_a.append((d[0], d[0]))  # 这个就不翻译了吧,添加数据
            
    for key, value in list_a:
        d[key].append(value)  # 省去了if判断语句,添加字典
    with open(f"./json文件/data.json", "w", encoding="utf-8") as f2:
        f2.write(json.dumps(d, ensure_ascii=False))  # 写入json,防止乱码


write_json()

今天分享的大致就是我在日常办公过程中常见的一些需求的解决方案

希望对你有所帮助

希望大家点赞收藏支持一下

最后祝大家 1024 快乐

相关推荐
测试老哥16 分钟前
外包干了两年,技术退步明显。。。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
終不似少年遊*19 分钟前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
如若1231 小时前
对文件内的文件名生成目录,方便查阅
java·前端·python
西猫雷婶1 小时前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
一条测试老狗2 小时前
【UI自动化】从WebDriver看Selenium与Appium的底层关联
selenium·appium·自动化
老刘莱国瑞2 小时前
STM32 与 AS608 指纹模块的调试与应用
python·物联网·阿里云
Linux运维技术栈2 小时前
Ansible(自动化运维)环境搭建及ansible-vault加密配置
运维·自动化·ansible
一只敲代码的猪3 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
Hello_WOAIAI3 小时前
批量将 Word 文件转换为 HTML:Python 实现指南
python·html·word
winfredzhang3 小时前
使用Python开发PPT图片提取与九宫格合并工具
python·powerpoint·提取·九宫格·照片