Stable diffusion的一些参数意义及常规设置

在线stabel Diffusion模型

https://huggingface.co/spaces/stabilityai/stable-diffusion
随机种子 seed

如果想要同一个文本提示,生成多次都是同一图像,可以设置一个随机种子,类似于random.seed()的原理,并将生成器传递给管道。每次使用具有相同种子的生成器时,都会得到相同的图像输出。

这里注意的是,实测中如果设置为 -1,那么每次会随机生成
num_inference_steps

可以使用 num_inference_steps 参数更改模型推理的步数

一般来说,使用的步数越多,结果越好,但是步数越多,建议使用默认的推理步数 50。如果想要更快的结果,可以使用较小的步数。如果想要更高质量图像,可以使用更大数字的步数。

实测中,对比图像发现,不同的num_inference_steps ,图像的内容和结构基本是一致的,但是一些形状细节存在很多不同,这表明num_inference_steps=较小值 的去噪步骤,提到的图像质量相对较低,通常使用 50 次去噪步骤,足以得到一个高质量图像。
guidance_scale

前面的所有示例统称为guidance_scale。guidance_scale是一种增加对指导生成(如文本)以及总体样本质量的条件信号的依从性的方法。它也被称为无分类器引导,简单地说,调整它可以更好的使用图像质量更好或更具备多样性。值介于7和8.5之间通常是稳定扩散的好选择。默认情况下,管道使用的guidance_scale为7.5。

  • 如果值很大, 图像质量可能更好,但对应的多样性会降低
  • 如果值很小, 图像质量可能更差,但对应的多样性会增加

默认情况下,稳定扩散生成512×512像素的图像。使用height和width参数以纵向或横向比例创建矩形图像非常容易出现缩放比例错误,部分图像内容,未展示出来,被覆盖了(这是因为图像内容大小大于设置的图像尺寸大小了)

最好在设置height和width参数,值为8的倍数

Sampling method: 采样方法

Sampling steps:采样迭代步数

Restore faces: 面容修复

Tiling: 生成平铺纹理

Highres.fix: 高分辨率修复

Firstpass width: 一开始的低分辨率的宽

Firstpass height: 一开始的低分辨率的高

CFG scale: 数值越小,AI多样性越多,越大限制越多

Variation seed: 在原来种子数的基础之上的子种子数

Denoising strength:跟原来图片的差距大小

相关推荐
迈火1 天前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Seeklike2 天前
diffusers学习--stable diffusion的管线解析
人工智能·stable diffusion·diffusers
马甲是掉不了一点的<.<2 天前
Stable Diffusion 环境配置详细指南
stable diffusion·环境配置
软件测试-阿涛2 天前
【AI绘画】Stable Diffusion webUI 常用功能使用技巧
人工智能·深度学习·计算机视觉·ai作画·stable diffusion
m0_603888713 天前
Stable Diffusion Models are Secretly Good at Visual In-Context Learning
人工智能·ai·stable diffusion·论文速览
爱分享的飘哥16 天前
第三十七章:文生图的炼金术:Stable Diffusion完整工作流深度解析
人工智能·pytorch·stable diffusion·文生图·ai绘画·代码实战·cfg
EndingCoder18 天前
Three.js + AI:结合 Stable Diffusion 生成纹理贴图
开发语言·前端·javascript·人工智能·stable diffusion·ecmascript·three.js
那年一路北19 天前
Deforum Stable Diffusion,轻松实现AI视频生成自由!
人工智能·stable diffusion·音视频
全宝19 天前
🎨【AI绘画实战】从零搭建Stable Diffusion环境,手把手教你生成超可爱Q版大头照!
人工智能·python·stable diffusion
sculida24 天前
秋叶sd-webui频繁出现生成后无反应的问题
stable diffusion