Stable diffusion的一些参数意义及常规设置

在线stabel Diffusion模型

https://huggingface.co/spaces/stabilityai/stable-diffusion
随机种子 seed

如果想要同一个文本提示,生成多次都是同一图像,可以设置一个随机种子,类似于random.seed()的原理,并将生成器传递给管道。每次使用具有相同种子的生成器时,都会得到相同的图像输出。

这里注意的是,实测中如果设置为 -1,那么每次会随机生成
num_inference_steps

可以使用 num_inference_steps 参数更改模型推理的步数

一般来说,使用的步数越多,结果越好,但是步数越多,建议使用默认的推理步数 50。如果想要更快的结果,可以使用较小的步数。如果想要更高质量图像,可以使用更大数字的步数。

实测中,对比图像发现,不同的num_inference_steps ,图像的内容和结构基本是一致的,但是一些形状细节存在很多不同,这表明num_inference_steps=较小值 的去噪步骤,提到的图像质量相对较低,通常使用 50 次去噪步骤,足以得到一个高质量图像。
guidance_scale

前面的所有示例统称为guidance_scale。guidance_scale是一种增加对指导生成(如文本)以及总体样本质量的条件信号的依从性的方法。它也被称为无分类器引导,简单地说,调整它可以更好的使用图像质量更好或更具备多样性。值介于7和8.5之间通常是稳定扩散的好选择。默认情况下,管道使用的guidance_scale为7.5。

  • 如果值很大, 图像质量可能更好,但对应的多样性会降低
  • 如果值很小, 图像质量可能更差,但对应的多样性会增加

默认情况下,稳定扩散生成512×512像素的图像。使用height和width参数以纵向或横向比例创建矩形图像非常容易出现缩放比例错误,部分图像内容,未展示出来,被覆盖了(这是因为图像内容大小大于设置的图像尺寸大小了)

最好在设置height和width参数,值为8的倍数

Sampling method: 采样方法

Sampling steps:采样迭代步数

Restore faces: 面容修复

Tiling: 生成平铺纹理

Highres.fix: 高分辨率修复

Firstpass width: 一开始的低分辨率的宽

Firstpass height: 一开始的低分辨率的高

CFG scale: 数值越小,AI多样性越多,越大限制越多

Variation seed: 在原来种子数的基础之上的子种子数

Denoising strength:跟原来图片的差距大小

相关推荐
Icoolkj16 小时前
深入了解 Stable Diffusion:AI 图像生成的奥秘
人工智能·stable diffusion
这是一个懒人1 天前
mac 快速安装stable diffusion webui
macos·stable diffusion
璇转的鱼1 天前
Stable Diffusion进阶之Controlnet插件使用
人工智能·ai作画·stable diffusion·aigc·ai绘画
AloneCat20123 天前
stable Diffusion模型结构
stable diffusion
西西弗Sisyphus3 天前
Stable Diffusion XL 文生图
stable diffusion
霍志杰4 天前
stable-diffusion windows本地部署
windows·stable diffusion
昨日之日20064 天前
ACE-Step - 20秒生成4分钟完整歌曲,音乐界的Stable Diffusion,支持50系显卡 本地一键整合包下载
计算机视觉·stable diffusion·音视频
白熊1884 天前
【图像大模型】Stable Diffusion Web UI:深度解析与实战指南
ui·stable diffusion
西西弗Sisyphus6 天前
基于Stable Diffusion XL模型进行文本生成图像的训练
stable diffusion
阿维的博客日记6 天前
VAE和Stable Diffusion的关系
stable diffusion·vae