如何训练Embedding Model

BGE的技术亮点:

  • 高效预训练和大规模文本微调;
  • 在两个大规模语料集上采用了RetroMAE预训练算法,进一步增强了模型的语义表征能力;
  • 通过负采样和难负样例挖掘,增强了语义向量的判别力;
  • 借鉴Instruction Tuning的策略,增强了在多任务场景下的通用能力。

数据集的构成:

RetroMAE预训练

主要思想是:encoder用小一点的mask rate得到sentence embedding,然后decoder用大一点的mask rate结合encoder得到的sentence embedding进行重构

此外,为了使得每个token使用的context信息不同,RetroMAE还使用了增强解码的方法

  • 解码的时候每一行都带,上下文信息和位置信息

微调

  • 主要通过对比学习和Instruction Tuning的思想

对比学习是一种训练模型的方法,通过比较正例和反例来学习数据的表示。

  • 输入数据的格式:模型接受三元组格式的数据作为输入,包括一个查询(query),一个正例(positive),和一个反例(negative)。

  • in-batch negatives 策略:除了上述三元组中的反例外,他们还采用了"in-batch negatives"策略,意思是在同一个批次的数据中,使用其他数据作为额外的反例。

  • cross-device negatives sharing method:这是一种在不同的GPU之间共享反例的方法,目的是大大增加反例的数量。

  • 训练硬件和参数:使用了48个A100(40G)的GPU进行训练。批次大小为32,768,因此每个查询在批次中有65,535个反例。使用了AdamW优化器,学习率为1e-5。对比损失的温度为0.01。

  • 在训练中为检索任务的查询添加了instruction。 对于英语,指令是Represent this sentence for searching relevant passages: ; 对于中文,指令是为这个句子生成表示以用于检索相关文章:. 在评测中,针对段落检索任务的任务需要在查询中添加指令,但不需要为段落文档添加指令。

相关推荐
玄同76520 小时前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
Loo国昌21 小时前
【垂类模型数据工程】第四阶段:高性能 Embedding 实战:从双编码器架构到 InfoNCE 损失函数详解
人工智能·后端·深度学习·自然语言处理·架构·transformer·embedding
自己的九又四分之三站台7 天前
8:大语言模型是无状态以及大语言模型的基石Embedding
人工智能·语言模型·embedding
laplace01238 天前
大模型整个训练流程
人工智能·深度学习·embedding·agent·rag
汗流浃背了吧,老弟!8 天前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
Philtell9 天前
Diffusion Model扩散模型中的time embeding的作用
embedding
zhangfeng11339 天前
大语言模型 bpe算法 后面对接的是 one-hot吗 nn.Embedding
算法·语言模型·embedding
andwhataboutit?10 天前
embedding model
embedding
程序员泠零澪回家种桔子13 天前
RAG中的Embedding技术
人工智能·后端·ai·embedding
Zilliz Planet13 天前
熠智AI+Milvus:从Embedding 到数据处理、问题重写,电商AI客服架构怎么搭?
人工智能·架构·embedding·milvus