如何训练Embedding Model

BGE的技术亮点:

  • 高效预训练和大规模文本微调;
  • 在两个大规模语料集上采用了RetroMAE预训练算法,进一步增强了模型的语义表征能力;
  • 通过负采样和难负样例挖掘,增强了语义向量的判别力;
  • 借鉴Instruction Tuning的策略,增强了在多任务场景下的通用能力。

数据集的构成:

RetroMAE预训练

主要思想是:encoder用小一点的mask rate得到sentence embedding,然后decoder用大一点的mask rate结合encoder得到的sentence embedding进行重构

此外,为了使得每个token使用的context信息不同,RetroMAE还使用了增强解码的方法

  • 解码的时候每一行都带,上下文信息和位置信息

微调

  • 主要通过对比学习和Instruction Tuning的思想

对比学习是一种训练模型的方法,通过比较正例和反例来学习数据的表示。

  • 输入数据的格式:模型接受三元组格式的数据作为输入,包括一个查询(query),一个正例(positive),和一个反例(negative)。

  • in-batch negatives 策略:除了上述三元组中的反例外,他们还采用了"in-batch negatives"策略,意思是在同一个批次的数据中,使用其他数据作为额外的反例。

  • cross-device negatives sharing method:这是一种在不同的GPU之间共享反例的方法,目的是大大增加反例的数量。

  • 训练硬件和参数:使用了48个A100(40G)的GPU进行训练。批次大小为32,768,因此每个查询在批次中有65,535个反例。使用了AdamW优化器,学习率为1e-5。对比损失的温度为0.01。

  • 在训练中为检索任务的查询添加了instruction。 对于英语,指令是Represent this sentence for searching relevant passages: ; 对于中文,指令是为这个句子生成表示以用于检索相关文章:. 在评测中,针对段落检索任务的任务需要在查询中添加指令,但不需要为段落文档添加指令。

相关推荐
yibuapi_com2 天前
Embedding 的数学特性与可视化解析
chatgpt·架构·langchain·embedding·claude·向量数据库·中转api
仙人掌_lz2 天前
为特定领域微调嵌入模型:打造专属的自然语言处理利器
人工智能·ai·自然语言处理·embedding·强化学习·rl·bge
背太阳的牧羊人13 天前
OpenAI Embedding 和密集检索(如 BERT/DPR)进行语义相似度搜索有什么区别和联系
人工智能·bert·embedding
ai大模型木子17 天前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料
老马啸西风1 个月前
Neo4j GDS-13-neo4j GDS 库中节点插入算法实现
数据库·算法·云原生·中间件·embedding·neo4j
SQLplusDB1 个月前
Oracle 23ai Vector Search 系列之3 集成嵌入生成模型(Embedding Model)到数据库示例,以及常见错误
数据库·oracle·embedding
墨绿色的摆渡人2 个月前
用 pytorch 从零开始创建大语言模型(六):对分类进行微调
人工智能·pytorch·python·深度学习·语言模型·embedding
花千树-0102 个月前
Dify - 架构、部署、扩展与二次开发指南
gpt·架构·prompt·aigc·embedding·llama·agi
花千树-0102 个月前
LangChain教程 - Agent -之 REACT_DOCSTORE
python·机器学习·langchain·pdf·prompt·aigc·embedding
Sirius Wu2 个月前
三级缓存架构
容器·kubernetes·embedding