Pytorch使用torch.utils.data.random_split拆分数据集,拆分后的数据集状况

对于这个API,我最开始的预想是从 '猫1猫2猫3猫4狗1狗2狗3狗4' 中分割出 '猫1猫2狗4狗1' 和 '猫4猫3狗2狗3' ,但是打印结果和我预想的不一样

数据集文件的存放路径如下图

测试代码如下

python 复制代码
import torch
import torchvision

transform = torchvision.transforms.Compose([
    torchvision.transforms.Resize((512,512)),  # 调整图像大小为 224x224
    torchvision.transforms.ToTensor(),  # 转换为张量
    torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化
])
dataset = torchvision.datasets.ImageFolder('C:\\Users\\ASUS\\PycharmProjects\\pythonProject1\\cats_and_dogs_train',
                                                 transform=transform)

val_ratio = 0.2
val_size = int(len(dataset) * val_ratio)
train_size = len(dataset) - val_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])


cats_num = 0
dogs_num = 0
for x,y in train_dataset:
    if y == 0:
        cats_num += 1
    else:
        dogs_num += 1

print("cats_num: ",cats_num)
print("dogs_num: ",dogs_num)

cats_num2 = 0
dogs_num2 = 0
for x,y in val_dataset:
    if y == 0:
        cats_num2 += 1
    else:
        dogs_num2 += 1

print("cats_num2: ",cats_num2)
print("dogs_num2: ",dogs_num2)

输出如下

可以看到总共25000张图片的数据集,分割后并不是cats_num:10000,dogs_num:10000,cats_num2:2500,dogs_num2:2500

也就是说,分割后的状况是猫狗的数量并不一定相等,如结果为 '猫1猫2猫4狗1' 和 '狗4猫3狗2狗3'

相关推荐
chatexcel31 分钟前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化
All The Way North-34 分钟前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
Li emily43 分钟前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
bylander1 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
m0_561359671 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov1 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
Techblog of HaoWANG1 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace01231 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_941418551 小时前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔1 小时前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人