CAP定理下:Zookeeper、Eureka、Nacos简单分析

CAP定理下:Zookeeper、Eureka、Nacos简单分析


CAP定理

C: 一致性(Consistency) :写操作之后的读操作也需要读到之前的
A: 可用性(Availability) :收到用户请求,服务器就必须给出响应
P: 分区容错性(Partition tolerance):系统中任意信息的丢失或失败不会影响系统的继续运作

CAP定理指的是在一个分布式系统中,C、A、P三者不可兼得

由于P是无法避免的,P总是成立的,故剩下的C和A无法同时做到,因为CA场景下通信可能会失败(即出现分区容错),类似于加锁不加锁。

bash 复制代码
火车票场景:放弃一致性实现AP
银行转账:放弃分区容错性实现CA

Zookeeper

实现:CP(一致性+分区容错性)

ZK选择放弃了高可用性,为达到了强一致性,采用了ZAB (Zookeeper Atomic Broadcast)协议,即原子广播协议来保证分布式事务的一致性(C),大概内容如下:

bash 复制代码
1)发现:必须选举出一个Leader进城,维护一个Follower客户端列表
2)同步:Leader负责与Followers同步数据,多副本保存(高可用、分区容错)
3)广播:Leader可接受客户端新的proposal请求,并广播给Followers

- 所有的事务必须由一个全局唯一的服务器来协调处理
- Leader将客户端请求转换为一个事务proposal广播给所有的Followers,然后等待所有Follower的ACK确认反馈,有一半Follower反馈就会向所有Follower下发commit请求,让他们将上一个事务proposal提交执行(二阶段提交)

所以,ZK集群在进行消息同步的时候,必须由一半以上的节点完成了同步才会生效返回,当Leader或过半节点不可用时,会重新进行Leader选举(选举模式),过程中就无法对外提供服务(无A)。但是对于服务发现注册组件来说,就算无法及时获得最新的服务列表,一般也不会导致系统整体的崩溃。

Eureka

实现:AP(可用性+分区容错性)

从Eureka的架构可知,他使用的是去中心化的模式,各个节点是平等的且没有主从概念,通过互相通讯注册的方式来实现消息的同步,自然保证了高可用性(A)。在消息同步时,Eureka并不对消息的抵达进行保证,

Nacos

实现:CP/AP均支持

1)AP :注册时临时存在于注册中心,即临时节点模式,会在服务下线或不可用时,或是心跳检测无响应时,更新其健康状态,过一段时间进行列表节点删除。(放弃一致性)在此模式下,Nacos集群中的节点之间通过Distro协议同步实例注册消息(Distro协议保证的是最终一致性)

2)CP :注册永久节点,通过注册中心主动探活,去探测永久实例的状态,在Nacos集群中通过Raft协议更新实例列表(类似zk的ZAB协议,选举过程中nacos集群不可用)

相关推荐
小鹿学程序2 小时前
搭建hadoop集群
大数据·hadoop·分布式
web3.08889992 小时前
淘宝(全量)商品详情 API 的分布式请求调用实践
分布式
lijun_xiao20092 小时前
SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式-学习笔记-1
分布式·spring cloud·rabbitmq
二宝1523 小时前
黑马商城day8-ES01
分布式·微服务·架构
shepherd1263 小时前
破局延时任务(下):Spring Boot + DelayQueue 优雅实现分布式延时队列(实战篇)
java·spring boot·分布式
昊衡科技3 小时前
在多阶段松弛实验中使用分布式光纤传感量化局部和非局部岩石变形
分布式·分布式光纤传感·ofdr
夫唯不争,故无尤也6 小时前
分布式训练一站式入门:DP,DDP,DeepSpeed Zero Stage1/2/3(数据并行篇)
分布式
星哥说事7 小时前
分布式存储:Ceph、GlusterFS、MinIO架构与部署
分布式·ceph·架构
LitRad9 小时前
kafka问题解决
分布式·kafka
blammmp21 小时前
RabbitMQ:仲裁队列 && HAProxy
分布式·rabbitmq