吃瓜教程3|决策树

ID3算法

假定当前样本集合D中第k类样本所占比例为pk,则样本集合D的信息熵定义为

信息增益

C4.5算法

ID3算法存在一个问题,就是偏向于取值数目较多的属性,因此C4.5算法使用了"增益率"(gain ratio)来选择划分属性

CART算法

使用属性α划分后的基尼指数为

剪枝处理

复制代码
* 预剪枝(prepruning):在构造的过程中先评估,再考虑是否分支。  
* 后剪枝(post-pruning):在构造好一颗完整的决策树后,自底向上,评估分支的必要性。  

评估指的是性能度量,即决策树的泛化性能。

连续值与缺失值处理

连续值

复制代码
* 首先将α的所有取值按升序排列,所有相邻属性的均值作为候选划分点(n-1个,n为α所有的取值数目)。  
* 计算每一个划分点划分集合D(即划分为两个分支)后的信息增益。  
* 选择最大信息增益的划分点作为最优划分点。

缺失值

假定为样本集中的每一个样本都赋予一个权重,根节点中的权重初始化为1,则定义:

通过在样本集D中选取在属性α上没有缺失值的样本子集,计算在该样本子集上的信息增益,最终的信息增益等于该样本子集划分后信息增益乘以样本子集占样本集的比重。即:

对于(2):若该样本子集在属性α上的值缺失,则将该样本以不同的权重(即每个分支所含样本比例)划入到所有分支节点中。该样本在分支节点中的权重变为:

多变量决策树

对于高维数据空间,决策树形成的分类边界有一个特点:轴平行,引入多变量决策树实现斜划分,分裂节点变为k1*x1+k2*x2+...

相关推荐
Z1Jxxx2 小时前
01序列01序列
开发语言·c++·算法
过期的秋刀鱼!3 小时前
机器学习-逻辑回归的成本函数的补充-推导
人工智能·机器学习·逻辑回归
shangjian0073 小时前
AI大模型-核心概念-机器学习
人工智能·机器学习
汽车仪器仪表相关领域3 小时前
全自动化精准检测,赋能高效年检——NHD-6108全自动远、近光检测仪项目实战分享
大数据·人工智能·功能测试·算法·安全·自动化·压力测试
Doro再努力4 小时前
【数据结构08】队列实现及练习
数据结构·算法
清铎5 小时前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
linweidong5 小时前
嵌入式电机:如何在低速和高负载状态下保持FOC(Field-Oriented Control)算法的电流控制稳定?
stm32·单片机·算法
net3m335 小时前
单片机屏幕多级菜单系统之当前屏幕号+屏幕菜单当前深度 机制
c语言·c++·算法
mmz12075 小时前
二分查找(c++)
开发语言·c++·算法