Python的Pandas库(二)进阶使用

Python开发实用教程

DataFrame的运算

DataFrame重载了运算符,支持许多的运算

算术运算

|---------------------|----------------------------|
| 运算方法 | 运算说明 |
| df.add(other) | 对应元素的加,如果是标量,就每个元素加上标量 |
| df.radd(other) | 等效于other+df |
| df.sub(other) | 对应元素相减,如果是标量,就每个元素减去标量 |
| df.rsub(other) | other-df |
| df.mul(other) | 对应元素相乘,如果是标量,每个元素乘以标量 |
| df.rmul(other) | other*df |
| df.div(other) | 对应元素相除,如果是标量,每个元素除以标量 |
| df.rdiv(other) | other/df |
| df.truediv(other) | 对应元素相除,如果是标量,每个元素除以标量 |
| df.rtruediv(other) | other/df |
| df.floordiv(other) | 对应元素相除取整,如果是标量,每个元素除以标量 |
| df.rfloordiv(other) | other//df |
| df.mod(other) | 对应元素相除取余,如果是标量,每个元素除以标量 |
| df.rmod(other) | other%df |
| df.pow(other) | 对应元素的次方,如果是标量,每个元素的other次方 |
| df.rpow(other) | other**df |

python 复制代码
import pandas as pd

df1 = pd.DataFrame({'c1':[1,2,3,4],'c2':[5,6,7,8],'c3':[10,11,12,13]})
df2 = pd.DataFrame({'c1':[11,12,13,14],'c2':[10,20,30,40],'c3':[100,200,300,400]})
df3 = df1 + df2
print(df3)
'''
   c1  c2   c3
0  12  15  110
1  14  26  211
2  16  37  312
3  18  48  413
'''

df4 = pd.DataFrame({'c1':[11,12,13,14]})
df5 = df1 + df4
print(df5)
'''
   c1  c2  c3
0  12 NaN NaN
1  14 NaN NaN
2  16 NaN NaN
3  18 NaN NaN
'''

df6 = df1 + 1
print(df6)
'''
   c1  c2  c3
0   2   6  11
1   3   7  12
2   4   8  13
3   5   9  14
'''

df7 = df1 -2
print(df7)
'''
   c1  c2  c3
0  -1   3   8
1   0   4   9
2   1   5  10
3   2   6  11
'''

df8 = 2 - df1
print(df8)
'''
   c1  c2  c3
0   1  -3  -8
1   0  -4  -9
2  -1  -5 -10
3  -2  -6 -11
'''

比较运算

比较运算如果是标量,就是每个元素与标量的比较,如果是两个形状一样的DataFrame,生成一个每个元素对应比较的DataFrame。

DataFrame读写文件

|-----------------------------------------------------|----------------------------------|
| 方法名 | 说明 |
| read_table(filepath_or_buffer, *[, sep, ...]) | 从带分隔符的文件读取 |
| read_csv(filepath_or_buffer, *[, sep, ...]) | 读csv格式文件 |
| DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) | 写csv格式文件 |
| read_fwf(filepath_or_buffer, *[, colspecs, ...]) | 读固定宽度的格式文件 |
| read_excel(io[, sheet_name, header, names, ...]) | 读excel文件 |
| DataFrame.to_excel(excel_writer[, ...]) | 写excel文件 |
| ExcelFile(path_or_buffer[, engine, ...]) | 用于将表格格式Excel工作表解析为DataFrame对象的类。 |
| ExcelFile.parse([sheet_name, header, names, ...]) | 解析一个指定的sheet |
| Styler.to_excel(excel_writer[, sheet_name, ...]) | 写指定的sheet |
| ExcelWriter(path[, engine, date_format, ...]) | 用于写入Excel的类 |
| read_json(path_or_buf, *[, orient, typ, ...]) | 从JSON格式读取数据 |
| DataFrame.to_json([path_or_buf, orient, ...]) | 转为为JSON对象字符串 |
| read_html(io, *[, match, flavor, header, ...]) | 从HTML表格读取数据 |
| DataFrame.to_html([buf, columns, col_space, ...]) | 生成HTML表格 |
| Styler.to_html([buf, table_uuid, ...]) | 生成HTML表格 |

相关推荐
小北方城市网3 分钟前
SpringBoot 集成 Elasticsearch 实战(全文检索与聚合分析):打造高效海量数据检索系统
java·redis·分布式·python·缓存
向量引擎6 分钟前
2026年AI架构实战:彻底解决OpenAI接口超时与封号,Python调用GPT-5.2/Sora2企业级架构详解(附源码+压测报告)
人工智能·python·架构
木头程序员6 分钟前
持续学习(Continual/Lifelong Learning)综述
大数据·人工智能·深度学习·机器学习
Hello.Reader11 分钟前
Apache Cassandra Connector:Flink 与宽列存储的高吞吐协作
大数据·flink·apache
中國龍在廣州15 分钟前
35天,成了AI 模型的斩杀线
大数据·人工智能·深度学习·算法·机器人
多米Domi0118 小时前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
Gofarlic_oms19 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
freepopo9 小时前
天津商业空间设计:材质肌理里的温度与质感[特殊字符]
python·材质
森叶9 小时前
Java 比 Python 高性能的原因:重点在高并发方面
java·开发语言·python
Zoey的笔记本9 小时前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库