bp神经网络中的重要函数解释

BP神经网络是反向传播神经网络
1.归一化 : 将数据映射到[0,1]或者[-1,1]缩小数据范围。防止数据淹没(一个数据很大一个很小,小的可能会忽略不计)
2. [Y,PS] = mapminmax(X,YMIN,YMAX)%x输入,y输出,YMIN,YMAX输出的范围,PS为结构体的信息。YMIN,YMAX默认是-1,1 ,正常设置为0,1

Y = mapminmax('apply',X,PS);%采用同X一样的归一化

X = mapminmax('reverse',Y,PS);%反归一化

eg:当x = [1,2,3,4];

经过归一化后是0-1之间的四个数,反归一化就是重新变成x=[1,2,3,4];
3.创建网络 net=newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)

参数:P 输入参数矩阵
T 目标参数矩阵
S N-1个隐含层数目(s(1)到s(N-1)),默认为空矩阵【】
TF 相关层的传递函数,默认隐含层为tansig函数,输出层为purlin函数。

tansig:正切S型传递函数 purelin:线性传递函数 logsig:对数S型传递函数
隐含层和输出层函数选择对BP神经网络预测精度有较大影响,一般隐含层节点转移函数选用tansig函数或者logsig函数,输出层节点转移函数选用tansig函数或者purelin函数。

BTF:BP神经网络学习训练函数,默认为taringlm函数,

BLF :权重学习函数,默认值为learngdm。traingd:最速下降BP算法。 traingdm:动量BP算法 trainda:学习率可变的最快下降BP算法。 traindx:学习率可变的动量BP算法。 trainrp : 弹性算法。

PF:性能函数,默认值为mse,可选择的还有sse,sae,mae,crossentropy 。mse:均方差。sse:和方差。mae: 平方损失。 crossentropy:交叉熵。

IPF/OPF/DDF均设置为默认值即可。
4.训练函数 :(训练所有神经网络)

net,tr,Y,E,Pf,Af\] = train(net,P,T,Pi,Ai) **net** :需要训练的神经网络 **p** :网络输入 **T** :网络期望输出 **Pi/Ai:初始输入/层延迟,默认为0 net** :训练好的神经网络 **tr:训练记录,包括训练的步数epoch和性能perf 对于没有输入延迟或层延迟的网络,Pi、Ai、Pf和Af参数是不需要的。** **仿真函数:\[Y,Pf,Af,E,perf\] = sim(net,P,Pi,Ai,T)** pf:最终输入延时 Af:最终层延迟 E:网络误差 Y:拟合或预测值 perf:网络性能 net:BP神经网络 P:拟合或预测值 T:拟合或预测期望 基本步骤:1。导入数据,分为训练输入数据和训练输出数据,测试输入数据和测试输出数据,各个层的节点数量, 2.训练样本归一化(包括训练输入和训练输出) 3.构建神经网络 4.网络参数配置 5.训练神经网络net 6.测试样本归一化 7.利用训练后的net进行预测测试集 8.得到预测结果 9.再进行反归一化得到原数值 10.计算误差 参考大佬视频:[添加链接描述](https://www.bilibili.com/video/BV1qM411b7wA/?spm_id_from=333.788&vd_source=f685608625f6c3b231216fe8caa01994)

相关推荐
有为少年9 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
Ven%9 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
yy_xzz10 小时前
002 PyTorch实战:神经网络回归任务 - 气温预测
pytorch·神经网络·回归
MMHM13 小时前
简单的Python神经网络识别手写数字
神经网络
fie888913 小时前
基于MATLAB的多幅图像拼接
人工智能·计算机视觉·matlab
一招定胜负13 小时前
神经网络入门
人工智能·深度学习·神经网络
网安_秋刀鱼14 小时前
【java安全】shiro反序列化1(shiro550)
java·开发语言·安全·web安全·网络安全·1024程序员节
Evand J16 小时前
【MATLAB免费例程】多无人机,集群多角度打击目标,时间与角度约束下的协同攻击算法,附下载链接
算法·matlab·无人机
咬人喵喵16 小时前
神经网络:教电脑像人脑一样思考
人工智能·深度学习·神经网络
SJLoveIT16 小时前
神经网络反向传播推导笔记 (整理版)
人工智能·笔记·神经网络