Baichuan2:Open large-scale language models

1.introduction

baichuan2基于2.6万亿个token进行训练。

2.pre-training

2.1 pre-training data

数据处理:关注数据频率和质量。数据频率依赖于聚类和去重,构建了一个支持LSH型特征和稠密embedding特征的大规模去重和聚类系统,单个文档、段落和句子被去重评分,这些评分然后用于预训练中的数据采样。

2.3 Tokenizer

分词器需要平衡两个关键因素:高压缩率以实现高效的推理,并适当大小的词汇表以确保每个词embedding的充分训练。词表从baichuan1中的64000扩展到125696,使用SentencePiece字节对编码。

2.4 Positional embeddings

Baichuan2-7B采用RoPE,Baichuan2-13B采用ALiBi。

2.5 Activations and Normalizations

SwiGLU,attention使用的是xformers,pre-RmsNorm

2.6 Optimizations

AdamW;BFloat16;NormHead:对输出embedding进行归一化;Max-z损失;

2.7 Scaling laws

在训练具有数十亿参数的大型语言模型之前,首先训练一些小模型,并为训练更大的模型拟合一个缩放定律。

2.8 infrastructure

1024块A800 GPU

3.alignment

baichuan2-7B-chat,baichuan2-13B-chat,对齐包括sft和rlhf。

3.1 sft

收集了超过10w个样本。

3.2 reward model

为所有的提示设计了一个三层分类系统,包括6个一级分类、30个二级分类和200多个三级分类。给定一个prompt,通过不同大小和阶段的baichuan2生成回复,已增加回复多样性。

4.safety

相关推荐
終不似少年遊*2 分钟前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
区块链小八歌20 分钟前
链原生 Web3 AI 网络 Chainbase 推出 AVS 主网, 拓展 EigenLayer AVS 场景
人工智能
禾高网络23 分钟前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc2 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate2 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜2 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien2 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案3 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9213 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习