Prevalence and prevention of large language model use in crowd work

本文是LLM系列文章,针对《Prevalence and prevention of large language model use in crowd work》的翻译。

众包工作中使用大型语言模型的流行率和预防

  • 摘要
  • [1 研究1:LLM使用的普遍率](#1 研究1:LLM使用的普遍率)
  • [2 研究2:LLM使用的预防](#2 研究2:LLM使用的预防)
  • [3 讨论](#3 讨论)
  • [4 材料与方法](#4 材料与方法)

摘要

我们表明,大型语言模型(LLM)的使用在众包工作者中很普遍,有针对性的缓解策略可以显著减少但不能消除LLM的使用。在文本摘要任务中,没有以任何方式指导工人使用LLM,LLM使用的估计流行率约为30%,但通过要求工人不要使用LLM和提高使用成本(例如禁用复制粘贴),LLM的使用率降低了约一半。二次分析进一步深入了解了LLM的使用及其预防:LLM的应用产生了高质量但同质的反应,这可能会损害与人类(而不是模型)行为有关的研究,并降低用众包数据训练的未来模型。同时,防止LLM的使用可能与获得高质量的响应不一致;例如,当要求员工不要使用LLM时,摘要中包含的携带基本信息的关键词较少。我们的估计可能会随着LLM的受欢迎程度或功能的增加以及其使用规范的变化而变化。然而,理解基于LLM的工具和用户的共同进化是保持众包研究有效性的关键,我们在广泛采用之前提供了一个关键的基线。

1 研究1:LLM使用的普遍率

2 研究2:LLM使用的预防

3 讨论

4 材料与方法

相关推荐
IT古董1 分钟前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生4 分钟前
机器学习连载
人工智能·机器学习
Trouvaille ~15 分钟前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm23 分钟前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家32 分钟前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算
是十一月末32 分钟前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空39 分钟前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
杭杭爸爸40 分钟前
无人直播源码
人工智能·语音识别
Ainnle2 小时前
微软 CEO 萨提亚・纳德拉:回顾过去十年,展望 AI 时代的战略布局
人工智能·microsoft
长风清留扬2 小时前
基于OpenAI Whisper AI模型自动生成视频字幕:全面解析与实战指南
人工智能·神经网络·opencv·计算机视觉·自然语言处理·数据挖掘·whisper