Prevalence and prevention of large language model use in crowd work

本文是LLM系列文章,针对《Prevalence and prevention of large language model use in crowd work》的翻译。

众包工作中使用大型语言模型的流行率和预防

  • 摘要
  • [1 研究1:LLM使用的普遍率](#1 研究1:LLM使用的普遍率)
  • [2 研究2:LLM使用的预防](#2 研究2:LLM使用的预防)
  • [3 讨论](#3 讨论)
  • [4 材料与方法](#4 材料与方法)

摘要

我们表明,大型语言模型(LLM)的使用在众包工作者中很普遍,有针对性的缓解策略可以显著减少但不能消除LLM的使用。在文本摘要任务中,没有以任何方式指导工人使用LLM,LLM使用的估计流行率约为30%,但通过要求工人不要使用LLM和提高使用成本(例如禁用复制粘贴),LLM的使用率降低了约一半。二次分析进一步深入了解了LLM的使用及其预防:LLM的应用产生了高质量但同质的反应,这可能会损害与人类(而不是模型)行为有关的研究,并降低用众包数据训练的未来模型。同时,防止LLM的使用可能与获得高质量的响应不一致;例如,当要求员工不要使用LLM时,摘要中包含的携带基本信息的关键词较少。我们的估计可能会随着LLM的受欢迎程度或功能的增加以及其使用规范的变化而变化。然而,理解基于LLM的工具和用户的共同进化是保持众包研究有效性的关键,我们在广泛采用之前提供了一个关键的基线。

1 研究1:LLM使用的普遍率

2 研究2:LLM使用的预防

3 讨论

4 材料与方法

相关推荐
MidJourney中文版17 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上43 分钟前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
burg_xun1 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能
酌沧2 小时前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师2 小时前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵2 小时前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构