Python轮廓追踪【OpenCV形态学操作】

文章目录

概要

一些理论知识

OpenCV形态学操作理论1
OpenCV形态学操作理论2
OpenCV轮廓操作|轮廓类似详解

代码

代码如下,可以直接运行

python 复制代码
import cv2 as cv

# 定义结构元素
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
# print kernel

capture = cv.VideoCapture(0)
print (capture.isOpened())
ok, frame = capture.read()
lower_b = (65, 43, 46)
upper_b = (110, 255, 255)

height, width = frame.shape[0:2]
screen_center = width / 2
offset = 50

while ok:
    # 将图像转成HSV颜色空间
    hsv_frame = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
    # 基于颜色的物体提取
    mask = cv.inRange(hsv_frame, lower_b, upper_b)
    mask2 = cv.morphologyEx(mask, cv.MORPH_OPEN, kernel)
    mask3 = cv.morphologyEx(mask2, cv.MORPH_CLOSE, kernel)

    # 找出面积最大的区域
    contours,_ = cv.findContours(mask3, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

    maxArea = 0
    maxIndex = 0
    for i, c in enumerate(contours):
        area = cv.contourArea(c)
    if area > maxArea:
        maxArea = area
    maxIndex = i
    # 绘制
    cv.drawContours(frame, contours, maxIndex, (255, 255, 0), 2)
    # 获取外切矩形
    x, y, w, h = cv.boundingRect(contours[maxIndex])
    cv.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
    # 获取中心像素点
    center_x = int(x + w / 2)
    center_y = int(y + h / 2)
    cv.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1)

    # 简单的打印反馈数据,之后补充运动控制
    if center_x < screen_center - offset:
        print ("turn left")
    elif screen_center - offset <= center_x <= screen_center + offset:
        print ("keep")
    elif center_x > screen_center + offset:
        print ("turn right")

    cv.imshow("mask4", mask3)
    cv.imshow("frame", frame)
    cv.waitKey(1)
    ok, frame = capture.read()

运行结果



相关推荐
张小凡vip5 小时前
数据挖掘(九) --Anaconda 全面了解与安装指南
人工智能·数据挖掘
zhangfeng11335 小时前
Ollama 支持模型微调但是不支持词库,支持RAG,go语言开发的大模型的推理应用,
人工智能·深度学习·golang
格林威5 小时前
Baumer相机铆钉安装状态检测:判断铆接是否到位的 5 个核心算法,附 OpenCV+Halcon 的实战代码!
人工智能·opencv·算法·计算机视觉·视觉检测·工业相机·堡盟相机
李昊哲小课5 小时前
OpenCV Haar级联分类器人脸检测完整教程
人工智能·opencv·计算机视觉
hit56实验室5 小时前
【易经系列】用六:利永贞。
人工智能
计算机毕业编程指导师5 小时前
大数据可视化毕设:Hadoop+Spark交通分析系统从零到上线 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·城市交通
星爷AG I5 小时前
9-22 目标跟踪(AGI基础理论)
人工智能·agi
m0_603888715 小时前
FineInstructions Scaling Synthetic Instructions to Pre-Training Scale
人工智能·深度学习·机器学习·ai·论文速览
计算机毕业编程指导师5 小时前
【计算机毕设选题】基于Spark的车辆排放分析:2026年热门大数据项目 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·车辆排放
新缸中之脑5 小时前
RAG 陷阱:向量搜索不是语义理解
人工智能