神经网络与深度学习第四章前馈神经网络习题解答

[习题4-1] 对于一个神经元 ,并使用梯度下降优化参数时,如果输入恒大于0,其收敛速度会比零均值化的输入更慢。

首先看一下CSDN的解释:

如果输入x恒大于0,使用sigmoid作为激活函数的神经元的输出值将会处于饱和状态,导致其梯度接近于0,这会使得梯度下降算法的收敛速度变慢。而如果输入经过零均值化处理,可以使得输出值的均值为0,避免了sigmoid函数的非0均值问题,从而减少了梯度消失的风险,提高了梯度下降算法的收敛速度。因此,使用零均值化的输入可以加速神经网络的训练过程。

结合图1理解一下:

图1

说一下我的理解:

首先,神经元对求导后的结果为,此处作sigmod激活函数,我们知道sigmod的激活函数图如下:

可以看出,如果是恒大于0的,其次,若x恒大于0,会导致进入神经元后,经过的输出值接近饱和状态(在0.5-1范围内),而的最大为0.5,说明当x大于0的时候,肯定不是沿着最大的负梯度方向进行下降的,而是以曲折抖动的方式进行下降(结合图1),但是以零均值化的方式,可以最大程度的保证数据沿着最大的负梯度方向进行下降,所以当恒大于0时,收敛速度要慢于零均值化的输入。

再举个形象的例子,比如你要从山顶走到山谷,你直线走下去即为最大负梯度方向,收敛快,但是你要很贪心的曲折的走,虽然在朝着山谷的方向走,但不是最快的方向,你同样可以到达终点,但是你的速度相较于直线走肯定是要慢的,条条大路通罗马,但是不可能全部人都走最快的大路,也有人走蜿蜒曲折的小路。

相关推荐
算法与编程之美2 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘
MicroTech20252 小时前
微算法科技(NASDAQ :MLGO)混合共识算法与机器学习技术:重塑区块链安全新范式
科技·算法·区块链
李牧九丶2 小时前
从零学算法1334
前端·算法
在繁华处2 小时前
C语言经典算法:汉诺塔问题
c语言·算法
爪哇部落算法小助手4 小时前
每日两题day50
数据结构·c++·算法
curry____3034 小时前
基本算法(2025.11.21)
c++·算法
WWZZ20255 小时前
快速上手大模型:深度学习5(实践:过、欠拟合)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
司铭鸿5 小时前
图论中的协同寻径:如何找到最小带权子图实现双源共达?
linux·前端·数据结构·数据库·算法·图论
小年糕是糕手7 小时前
【C++】C++入门 -- 输入&输出、缺省参数
c语言·开发语言·数据结构·c++·算法·leetcode·排序算法
情怀姑娘7 小时前
面试题---------------场景+算法
java·算法·mybatis