神经网络与深度学习第四章前馈神经网络习题解答

[习题4-1] 对于一个神经元 ,并使用梯度下降优化参数时,如果输入恒大于0,其收敛速度会比零均值化的输入更慢。

首先看一下CSDN的解释:

如果输入x恒大于0,使用sigmoid作为激活函数的神经元的输出值将会处于饱和状态,导致其梯度接近于0,这会使得梯度下降算法的收敛速度变慢。而如果输入经过零均值化处理,可以使得输出值的均值为0,避免了sigmoid函数的非0均值问题,从而减少了梯度消失的风险,提高了梯度下降算法的收敛速度。因此,使用零均值化的输入可以加速神经网络的训练过程。

结合图1理解一下:

图1

说一下我的理解:

首先,神经元对求导后的结果为,此处作sigmod激活函数,我们知道sigmod的激活函数图如下:

可以看出,如果是恒大于0的,其次,若x恒大于0,会导致进入神经元后,经过的输出值接近饱和状态(在0.5-1范围内),而的最大为0.5,说明当x大于0的时候,肯定不是沿着最大的负梯度方向进行下降的,而是以曲折抖动的方式进行下降(结合图1),但是以零均值化的方式,可以最大程度的保证数据沿着最大的负梯度方向进行下降,所以当恒大于0时,收敛速度要慢于零均值化的输入。

再举个形象的例子,比如你要从山顶走到山谷,你直线走下去即为最大负梯度方向,收敛快,但是你要很贪心的曲折的走,虽然在朝着山谷的方向走,但不是最快的方向,你同样可以到达终点,但是你的速度相较于直线走肯定是要慢的,条条大路通罗马,但是不可能全部人都走最快的大路,也有人走蜿蜒曲折的小路。

相关推荐
priority_key2 小时前
排序算法:堆排序、快速排序、归并排序
java·后端·算法·排序算法·归并排序·堆排序·快速排序
不染尘.3 小时前
2025_11_7_刷题
开发语言·c++·vscode·算法
来荔枝一大筐4 小时前
力扣 寻找两个正序数组的中位数
算法
算法与编程之美4 小时前
理解Java finalize函数
java·开发语言·jvm·算法
地平线开发者4 小时前
LLM 训练基础概念与流程简介
算法·自动驾驶
点云SLAM4 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
星释4 小时前
Rust 练习册 :Matching Brackets与栈数据结构
数据结构·算法·rust
地平线开发者4 小时前
Camsys 时间戳信息简介
算法·自动驾驶
星释4 小时前
Rust 练习册 :Luhn与校验算法
java·算法·rust
代码雕刻家4 小时前
C语言中关于类型转换不匹配的解决方案
c语言·开发语言·算法