神经网络与深度学习第四章前馈神经网络习题解答

[习题4-1] 对于一个神经元 ,并使用梯度下降优化参数时,如果输入恒大于0,其收敛速度会比零均值化的输入更慢。

首先看一下CSDN的解释:

如果输入x恒大于0,使用sigmoid作为激活函数的神经元的输出值将会处于饱和状态,导致其梯度接近于0,这会使得梯度下降算法的收敛速度变慢。而如果输入经过零均值化处理,可以使得输出值的均值为0,避免了sigmoid函数的非0均值问题,从而减少了梯度消失的风险,提高了梯度下降算法的收敛速度。因此,使用零均值化的输入可以加速神经网络的训练过程。

结合图1理解一下:

图1

说一下我的理解:

首先,神经元对求导后的结果为,此处作sigmod激活函数,我们知道sigmod的激活函数图如下:

可以看出,如果是恒大于0的,其次,若x恒大于0,会导致进入神经元后,经过的输出值接近饱和状态(在0.5-1范围内),而的最大为0.5,说明当x大于0的时候,肯定不是沿着最大的负梯度方向进行下降的,而是以曲折抖动的方式进行下降(结合图1),但是以零均值化的方式,可以最大程度的保证数据沿着最大的负梯度方向进行下降,所以当恒大于0时,收敛速度要慢于零均值化的输入。

再举个形象的例子,比如你要从山顶走到山谷,你直线走下去即为最大负梯度方向,收敛快,但是你要很贪心的曲折的走,虽然在朝着山谷的方向走,但不是最快的方向,你同样可以到达终点,但是你的速度相较于直线走肯定是要慢的,条条大路通罗马,但是不可能全部人都走最快的大路,也有人走蜿蜒曲折的小路。

相关推荐
近津薪荼2 分钟前
优选算法——双指针6(单调性)
c++·学习·算法
helloworldandy35 分钟前
高性能图像处理库
开发语言·c++·算法
2401_8365631836 分钟前
C++中的枚举类高级用法
开发语言·c++·算法
bantinghy39 分钟前
Nginx基础加权轮询负载均衡算法
服务器·算法·nginx·负载均衡
chao1898441 小时前
矢量拟合算法在网络参数有理式拟合中的应用
开发语言·算法
代码无bug抓狂人1 小时前
动态规划(附带入门例题)
c语言·算法·动态规划
weixin_445402301 小时前
C++中的命令模式变体
开发语言·c++·算法
季明洵1 小时前
C语言实现顺序表
数据结构·算法·c·顺序表
Hgfdsaqwr1 小时前
实时控制系统优化
开发语言·c++·算法
2301_821369612 小时前
嵌入式实时C++编程
开发语言·c++·算法