数据挖掘神器Orange初步使用

文章目录

安装

可以在官网下载,地址为Orange,如果已经装了Anaconda,则可在Anaconda Navigator中找到一个非常猥琐的图标,下面写着Orange3,可以点击Install,装完之后点Launch就能用了。

当然也可以用命令行

复制代码
conda config --add channels conda-forge
conda install orange3

安装完成后,可在命令行启动程序

复制代码
orange-canvas
# 或者
python -m Orange.canvas

也可以直接找到orange-canvas.exe,其路径在Orange/Scripts中。

示例项目

打开之后,选择help->Example Workflows,打开示例项目,这里选择Classification Tree,即分类树,打开之后如下图所示,其中文本框可以编辑,下图就是将原文小小地翻译了一下。

在Orange的画板上,最小单元为组件,双击那些圆形的组件,可以查看其属性。点击左侧的Data Table,添加一个新的组件,并点击其左侧的虚线,拉出线条与File相连接,就会把数据"导入"到表格中,双击就可以查看了。

展示鸢尾花数据

将File图标拖入右侧画布,双击弹出窗口,选择iris.tab文件,关闭。

将Data Table拖入画布,点击File外侧的虚线并拖动,使二者连接,然后双击数据表,就可以查看iris.tab的内容了。

右侧为数据表格,左侧可对数据表格的一些特性进行定制,比如勾选Visulize numeric values后,表格中会用蓝色的横线表示某个单元格中的值在整个列中的相对大小。

用同样的方式,将Paint Data也拖入画布,并与File连接,然后双击,就可以看到对数据的可视化展示,效果如下

右侧就是绘图窗口,而左侧相当于是控制台。首先Labels有三类不同颜色,正好对应上表中iris那一栏的三种类别。下面Tools中有六个工具,可分为四类

  • Brush和Put用于增加数据,前者像刷子一样,一下新增多组数据,后者则一次新增一个。以上图为例,由于选中了蓝色的类别,所以使用这两个工具会在鼠标所在位置,新增setosa点。
  • Jitter和Magnet:用于调整数据在图中的位置,Jitter可以让数据点远离鼠标;Magnet则可以让数据点靠近鼠标。
  • Select:用于框选
  • Clear:清除样本

在使用上述工具后,会改变原有的数据排布,此时可点击Reset to Input Data,以重置数据。

接下来,将Feature Statistics拖动到画布中,双击点开即可看到三类鸢尾花的分布情况。

相关推荐
Salt_07281 分钟前
DAY 22 常见的特征筛选算法
人工智能·python·机器学习
机器觉醒时代3 分钟前
星动纪元 | 清华孵化的人形机器人先锋,以「具身大脑+本体+灵巧手」定义通用智能未来
人工智能·机器人·人形机器人·灵巧手
LplLpl114 分钟前
从零实现本地轻量化 LLM 部署:Python+Ollama 快速搭建个人 AI 助手
人工智能
Hi202402179 分钟前
xtreme1半自动标注平台部署及使用
人工智能·标注·xtreme1
阿杰学AI11 分钟前
AI核心知识25——大语言模型之RAG(简洁且通俗易懂版)
人工智能·机器学习·语言模型·自然语言处理·aigc·agi·rag
亚马逊云开发者12 分钟前
新一代SageMaker+Databricks统一目录:机器学习与数据分析工作流打通方案
人工智能
IT·小灰灰14 分钟前
深度解析重排序AI模型:基于硅基流动API调用多语言重排序AI实战指南
java·大数据·javascript·人工智能·python·数据挖掘·php
g***789116 分钟前
Python连接SQL SEVER数据库全流程
数据库·python·sql
Philtell17 分钟前
【动手学深度学习】笔记
人工智能·笔记·深度学习
极客BIM工作室17 分钟前
ZFNet反卷积网络(Deconvnet):让CNN“黑盒”变透明的核心技术
网络·人工智能·cnn