CPU上下文切换

多个进程在竞争CPU的时候并没有真正运行,但是CPU上下文切换会导致系统的负载升高。

Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务同时运行。当然,这些任务实际上并不是真的在同时运行,而是因为系统在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。

在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好CPU 寄存器程序计数器(Program Counter,PC)

CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储CPU即将执行的下一条指令位置。在CPU运行任何任务前,这是必须的依赖环境,因此也被叫做CPU上下文

CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。

操作系统管理的这些"任务"包括进程、线程和中断,所以CPU上下文切换就可以根据不同的场景包括进程上下文切换线程上下文切换中断上下文切换

进程上下文切换

进程上下文切换和系统调用

Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级的 Ring 0 和 Ring 3。

内核空间(Ring 0)具有最高权限,可以直接访问所有资源;

用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。

这就说明,程序可以在内核空间运行,也可以在用户空间运行,进程在用户空间运行时,称为进程的用户态,而陷入内核空间的时候,称为进程的内核态。

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

系统调用的过程肯定发生了CPU 上下文切换:

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。

而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。

一次系统调用的过程,其实是发生了两次 CPU 上下文切换。系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。

系统调用和进程上下文切换是不一样的原因:

进程上下文切换,是指从一个进程切换到另一个进程运行。

系统调用过程中一直是同一个进程在运行。

系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。

进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。

根据《进程上下文》这篇文章,可以看出进程的运行环境主要包括:

1.进程空间中的代码和数据、各种数据结构、进程堆栈和共享内存区等。

2.环境变量:提供进程运行所需的环境信息。

3.系统数据:进程空间中的对进程进行管理和控制所需的信息,包括进程任务结构体以及内核堆栈等。

4.进程访问设备或者文件时的权限。

5.各种硬件寄存器。

6.地址转换信息。

而进程的运行环境是动态变化的,尤其是硬件寄存器的值以及进程控制信息是随着进程的运行而不断变化的。在Linux中把系统提供给进程的的处于动态变化的运行环境总和称为进程上下文。

进程上下文切换跟系统调用的区别如下:

进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

如下图所示,保存上下文和恢复上下文的过程并不是"免费"的,需要内核在 CPU 上运行才能完成。

根据 Tsuna 的测试报告,每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。

进程调度到CPU上运行的时间

进程调度到CPU上运行的时间有以下场景:

第一,当某个进程的CPU时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。

第二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。

第三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。

第四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。

第五,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

线程上下文切换

线程与进程的区别

线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位。说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。

对于线程和进程,我们可以这么理解:

当进程只有一个线程时,可以认为进程就等于线程。

当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。

线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

线程切换的两种情况

因为上边提到的线程和进程的关系,线程的上下文切换其实就可以分为两种情况:

第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。

虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

此文章为10月Day 27学习笔记,内容来源于极客时间《Linux 性能优化实战》

相关推荐
轩辰~12 分钟前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
雨中rain1 小时前
Linux -- 从抢票逻辑理解线程互斥
linux·运维·c++
Bessssss1 小时前
centos日志管理,xiao整理
linux·运维·centos
s_yellowfish1 小时前
Linux服务器pm2 运行chatgpt-on-wechat,搭建微信群ai机器人
linux·服务器·chatgpt
豆是浪个1 小时前
Linux(Centos 7.6)yum源配置
linux·运维·centos
vvw&1 小时前
如何在 Ubuntu 22.04 上安装 Ansible 教程
linux·运维·服务器·ubuntu·开源·ansible·devops
我一定会有钱1 小时前
【linux】NFS实验
linux·服务器
Ven%2 小时前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip
是阿建吖!2 小时前
【Linux】基础IO(磁盘文件)
linux·服务器·数据库
张暮笛2 小时前
蓝牙协议——音量控制
linux