【LetMeFly】2558.从数量最多的堆取走礼物
力扣题目链接:https://leetcode.cn/problems/take-gifts-from-the-richest-pile/
给你一个整数数组 gifts
,表示各堆礼物的数量。每一秒,你需要执行以下操作:
- 选择礼物数量最多的那一堆。
- 如果不止一堆都符合礼物数量最多,从中选择任一堆即可。
- 选中的那一堆留下平方根数量的礼物(向下取整),取走其他的礼物。
返回在 k
秒后剩下的礼物数量*。*
示例 1:
输入:gifts = [25,64,9,4,100], k = 4
输出:29
解释:
按下述方式取走礼物:
- 在第一秒,选中最后一堆,剩下 10 个礼物。
- 接着第二秒选中第二堆礼物,剩下 8 个礼物。
- 然后选中第一堆礼物,剩下 5 个礼物。
- 最后,再次选中最后一堆礼物,剩下 3 个礼物。
最后剩下的礼物数量分别是 [5,8,9,4,3] ,所以,剩下礼物的总数量是 29 。
示例 2:
输入:gifts = [1,1,1,1], k = 4
输出:4
解释:
在本例中,不管选中哪一堆礼物,都必须剩下 1 个礼物。
也就是说,你无法获取任一堆中的礼物。
所以,剩下礼物的总数量是 4 。
提示:
1 <= gifts.length <= 10
^3^1 <= gifts[i] <= 10
^9^1 <= k <= 10
^3^
方法一:优先队列(大根堆)
首先将gifts数组变成大根堆(或者优先队列),然后在接下来的 n n n次操作中,每次取出堆顶的一个元素,并将这个元素( t t t)的 ⌊ t ⌋ \lfloor \sqrt{t} \rfloor ⌊t ⌋加入堆栈中。
k k k次操作后,返回堆/数组中元素之和即可。
- 时间复杂度 O ( n + k log n ) O(n + k \log n) O(n+klogn)
- 空间复杂度 O ( 1 ) O(1) O(1)。这里直接在 g i f t s gifts gifts数组上建堆了,没有使用过多的额外空间
AC代码
C++
cpp
class Solution {
public:
long long pickGifts(vector<int>& gifts, int k) {
make_heap(gifts.begin(), gifts.end());
while (k--) {
pop_heap(gifts.begin(), gifts.end()); // 弹出堆顶并一到数组末尾
gifts.back() = sqrt(gifts.back());
push_heap(gifts.begin(), gifts.end());
}
return accumulate(gifts.begin(), gifts.end(), 0LL);
}
};
Python
python
from typing import List
from math import sqrt
import heapq
class Solution:
def pickGifts(self, gifts: List[int], k: int) -> int:
for i in range(len(gifts)):
gifts[i] = -gifts[i]
heapq.heapify(gifts)
for _ in range(k):
thisGift = heapq.heappop(gifts)
heapq.heappush(gifts, -int(sqrt(-thisGift)))
return -sum(gifts)
同步发文于CSDN,原创不易,转载经作者同意后请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/134088006