pytorch代码复现1(基础知识)

创建矩阵

全零矩阵

复制代码
In [4]:
import torch
torch.__version__
x=torch.empty(5,3)
x

Out[4]:

复制代码
tensor([[0.0000e+00, 0.0000e+00, 4.6430e-23],
        [1.4013e-45, 1.2612e-44, 0.0000e+00],
        [3.5733e-43, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00]])

随机矩阵

In [5]:

复制代码
x=torch.rand(5,3)
x

Out[5]:

复制代码
tensor([[0.8045, 0.6600, 0.5920],
        [0.9726, 0.2459, 0.5417],
        [0.5958, 0.6286, 0.5736],
        [0.5969, 0.0276, 0.8971],
        [0.9583, 0.4394, 0.5928]])

#tensor(张量)几维矩阵都行

初始化一个全零矩阵

In [20]:

复制代码
x=torch.zeros(5,3)#x=torch.zeros(5,4,dtype=torch.int)
x

Out[20]:

复制代码
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])

直接传入数据

In [18]:

复制代码
y=torch.tensor([5,4])
y

Out[18]:

复制代码
tensor([5, 4])

显示矩阵大小

In [21]:

复制代码
x.size()#当前的维度是几行几列的

Out[21]:

复制代码
torch.Size([5, 3])

矩阵相加

法1:

In [25]:

复制代码
y=torch.rand(5,3)
x=torch.rand(5,3)
x+y

Out[25]:

复制代码
tensor([[0.8520, 0.6184, 1.2141],
        [1.8745, 1.0329, 1.1968],
        [0.9743, 0.5262, 1.4275],
        [0.5415, 1.0113, 1.2635],
        [0.9762, 0.7496, 1.4369]])

法2:

In [26]:

复制代码
torch.add(x,y)

Out[26]:

复制代码
tensor([[0.8520, 0.6184, 1.2141],
        [1.8745, 1.0329, 1.1968],
        [0.9743, 0.5262, 1.4275],
        [0.5415, 1.0113, 1.2635],
        [0.9762, 0.7496, 1.4369]])

索引

In [27]:

复制代码
x[:1]

Out[27]:

复制代码
tensor([[0.0229, 0.1664, 0.5243]])

改变矩阵维度

In [28]:

复制代码
x=torch.rand(4,4)
y=x.view(16)
z=x.view(-1,8)#-1代表自动填充
print(x.size(),y.size(),z.size())
复制代码
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

tensor转成numpy的格式

In [30]:

复制代码
a=torch.ones(5)
b=a.numpy()
b

Out[30]:

复制代码
array([1., 1., 1., 1., 1.], dtype=float32)

numpy转tensor的格式

In [29]:

复制代码
import numpy as np
a=np.ones(5)
b=torch.from_numpy(a)
b

Out[29]:

复制代码
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
相关推荐
幼稚园的山代王8 分钟前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
dfsj660118 分钟前
LLMs 系列科普文(14)
人工智能·深度学习·算法
摘取一颗天上星️15 分钟前
深入解析机器学习的心脏:损失函数及其背后的奥秘
人工智能·深度学习·机器学习·损失函数·梯度下降
远方160921 分钟前
20-Oracle 23 ai free Database Sharding-特性验证
数据库·人工智能·oracle
znhy605823 分钟前
智能终端与边缘计算按章复习
人工智能·边缘计算
__Benco29 分钟前
OpenHarmony平台驱动使用(十五),SPI
人工智能·驱动开发·harmonyos
Listennnn30 分钟前
AI系统的构建
人工智能·系统架构
新智元34 分钟前
全球 30 名顶尖数学家秘密集会围剿 AI,当场破防!惊呼已接近数学天才
人工智能·openai
楽码38 分钟前
AI决策树:整理繁杂问题的简单方法
人工智能·后端·openai
星辰大海的精灵43 分钟前
基于Dify+MCP实现通过微信发送天气信息给好友
人工智能·后端·python