pytorch代码复现1(基础知识)

创建矩阵

全零矩阵

复制代码
In [4]:
import torch
torch.__version__
x=torch.empty(5,3)
x

Out[4]:

复制代码
tensor([[0.0000e+00, 0.0000e+00, 4.6430e-23],
        [1.4013e-45, 1.2612e-44, 0.0000e+00],
        [3.5733e-43, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 0.0000e+00, 0.0000e+00]])

随机矩阵

In [5]:

复制代码
x=torch.rand(5,3)
x

Out[5]:

复制代码
tensor([[0.8045, 0.6600, 0.5920],
        [0.9726, 0.2459, 0.5417],
        [0.5958, 0.6286, 0.5736],
        [0.5969, 0.0276, 0.8971],
        [0.9583, 0.4394, 0.5928]])

#tensor(张量)几维矩阵都行

初始化一个全零矩阵

In [20]:

复制代码
x=torch.zeros(5,3)#x=torch.zeros(5,4,dtype=torch.int)
x

Out[20]:

复制代码
tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])

直接传入数据

In [18]:

复制代码
y=torch.tensor([5,4])
y

Out[18]:

复制代码
tensor([5, 4])

显示矩阵大小

In [21]:

复制代码
x.size()#当前的维度是几行几列的

Out[21]:

复制代码
torch.Size([5, 3])

矩阵相加

法1:

In [25]:

复制代码
y=torch.rand(5,3)
x=torch.rand(5,3)
x+y

Out[25]:

复制代码
tensor([[0.8520, 0.6184, 1.2141],
        [1.8745, 1.0329, 1.1968],
        [0.9743, 0.5262, 1.4275],
        [0.5415, 1.0113, 1.2635],
        [0.9762, 0.7496, 1.4369]])

法2:

In [26]:

复制代码
torch.add(x,y)

Out[26]:

复制代码
tensor([[0.8520, 0.6184, 1.2141],
        [1.8745, 1.0329, 1.1968],
        [0.9743, 0.5262, 1.4275],
        [0.5415, 1.0113, 1.2635],
        [0.9762, 0.7496, 1.4369]])

索引

In [27]:

复制代码
x[:1]

Out[27]:

复制代码
tensor([[0.0229, 0.1664, 0.5243]])

改变矩阵维度

In [28]:

复制代码
x=torch.rand(4,4)
y=x.view(16)
z=x.view(-1,8)#-1代表自动填充
print(x.size(),y.size(),z.size())
复制代码
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

tensor转成numpy的格式

In [30]:

复制代码
a=torch.ones(5)
b=a.numpy()
b

Out[30]:

复制代码
array([1., 1., 1., 1., 1.], dtype=float32)

numpy转tensor的格式

In [29]:

复制代码
import numpy as np
a=np.ones(5)
b=torch.from_numpy(a)
b

Out[29]:

复制代码
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
相关推荐
快起来别睡了10 分钟前
LangChain 介绍及使用指南:从“会聊天”到“能干活”的 AI 应用开发工具
人工智能
AI数据皮皮侠19 分钟前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
静心问道28 分钟前
大语言模型能够理解并可以通过情绪刺激进行增强
人工智能·语言模型·大模型
运器12335 分钟前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
aneasystone本尊38 分钟前
管理 Claude Code 的工具权限
人工智能
聚客AI1 小时前
大模型学习进阶路线图:从Prompt到预训练的四阶段全景解析
人工智能·llm·掘金·日新计划
晓13131 小时前
第七章 OpenCV篇——角点检测与特征检测
人工智能·深度学习·计算机视觉
DeepSeek大模型官方教程1 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
MidJourney中文版2 小时前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
William.csj2 小时前
Pytorch/CUDA——flash-attn 库编译的 gcc 版本问题
pytorch·cuda